## L Filipe C Castro

## List of Publications by Citations

Source: https://exaly.com/author-pdf/11428061/l-filipe-c-castro-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,865 40 90 23 h-index g-index citations papers 4.87 98 2,294 5.1 L-index avg, IF ext. citations ext. papers

| #  | Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IF   | Citations |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 90 | Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire. <i>Progress in Lipid Research</i> , <b>2016</b> , 62, 25-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.3 | 215       |
| 89 | Imposex induction is mediated through the Retinoid X Receptor signalling pathway in the neogastropod Nucella lapillus. <i>Aquatic Toxicology</i> , <b>2007</b> , 85, 57-66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.1  | 138       |
| 88 | Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. <i>Science Advances</i> , <b>2018</b> , 4, eaar6849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.3 | 123       |
| 87 | Disruption of zebrafish (Danio rerio) embryonic development after full life-cycle parental exposure to low levels of ethinylestradiol. <i>Aquatic Toxicology</i> , <b>2009</b> , 95, 330-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.1  | 90        |
| 86 | Dispersal of NK homeobox gene clusters in amphioxus and humans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>2003</b> , 100, 5292-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.5 | 74        |
| 85 | The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates. <i>BMC Evolutionary Biology</i> , <b>2011</b> , 11, 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3    | 72        |
| 84 | The Mammalian "Obesogen" Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish. <i>PLoS ONE</i> , <b>2015</b> , 10, e0143911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.7  | 69        |
| 83 | Tributyltin-induced imposex in marine gastropods involves tissue-specific modulation of the retinoid X receptor. <i>Aquatic Toxicology</i> , <b>2011</b> , 101, 221-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.1  | 66        |
| 82 | Recurrent gene loss correlates with the evolution of stomach phenotypes in gnathostome history. <i>Proceedings of the Royal Society B: Biological Sciences</i> , <b>2014</b> , 281, 20132669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.4  | 48        |
| 81 | The estrogen receptor of the gastropod Nucella lapillus: modulation following exposure to an estrogenic effluent?. <i>Aquatic Toxicology</i> , <b>2007</b> , 84, 465-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.1  | 42        |
| 80 | Statins: An undesirable class of aquatic contaminants?. <i>Aquatic Toxicology</i> , <b>2016</b> , 174, 1-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.1  | 41        |
| 79 | The genomic environment around the Aromatase gene: evolutionary insights. <i>BMC Evolutionary Biology</i> , <b>2005</b> , 5, 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3    | 39        |
| 78 | Diversity and history of the long-chain acyl-CoA synthetase (Acsl) gene family in vertebrates. <i>BMC Evolutionary Biology</i> , <b>2013</b> , 13, 271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3    | 37        |
| 77 | A mollusk retinoic acid receptor (RAR) ortholog sheds light on the evolution of ligand binding. <i>Endocrinology</i> , <b>2014</b> , 155, 4275-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.8  | 37        |
| 76 | An antecedent of the MHC-linked genomic region in amphioxus. <i>Immunogenetics</i> , <b>2004</b> , 55, 782-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.2  | 35        |
| 75 | To bind or not to bind: the taxonomic scope of nuclear receptor mediated endocrine disruption in invertebrate phyla. <i>Environmental Science &amp; Environmental Science &amp; Environm</i> | 10.3 | 33        |
| 74 | Organotin levels in seafood from Portuguese markets and the risk for consumers. <i>Chemosphere</i> , <b>2009</b> , 75, 661-666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.4  | 33        |

## (2019-2015)

| 73 | the Zebrafish (Danio rerio). <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , <b>2015</b> , 78, 747-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.2              | 26 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|
| 72 | Gene expression analysis of ABC efflux transporters, CYP1A and GSTIn Nile tilapia after exposure to benzo(a)pyrene. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , <b>2012</b> , 155, 469-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.2              | 25 |
| 71 | A complete enzymatic capacity for long-chain polyunsaturated fatty acid biosynthesis is present in the Amazonian teleost tambaqui, Colossoma macropomum. <i>Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology</i> , <b>2019</b> , 227, 90-97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.3              | 25 |
| 70 | Rapid-behaviour responses as a reliable indicator of estrogenic chemical toxicity in zebrafish juveniles. <i>Chemosphere</i> , <b>2011</b> , 85, 1543-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.4              | 24 |
| 69 | "": A Draft Genome Assembly, Liver Transcriptome, and Nutrigenomics of the European Sardine,. <i>Genes</i> , <b>2018</b> , 9,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.2              | 24 |
| 68 | Zebrafish (Danio rerio) life-cycle exposure to chronic low doses of ethinylestradiol modulates p53 gene transcription within the gonads, but not NER pathways. <i>Ecotoxicology</i> , <b>2012</b> , 21, 1513-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.9              | 23 |
| 67 | Retinoid metabolism in invertebrates: when evolution meets endocrine disruption. <i>General and Comparative Endocrinology</i> , <b>2014</b> , 208, 134-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                | 22 |
| 66 | Tissue-specific distribution patterns of retinoids and didehydroretinoids in rainbow trout Oncorhynchus mykiss. <i>Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology</i> , <b>2012</b> , 161, 69-78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3              | 19 |
| 65 | Retinol metabolism in the mollusk Osilinus lineatus indicates an ancient origin for retinyl ester storage capacity. <i>PLoS ONE</i> , <b>2012</b> , 7, e35138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.7              | 19 |
| 64 | Complete Inactivation of Sebum-Producing Genes Parallels the Loss of Sebaceous Glands in Cetacea. <i>Molecular Biology and Evolution</i> , <b>2019</b> , 36, 1270-1280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.3              | 18 |
| 63 | Cloning and expression analysis of the 17[hydroxysteroid dehydrogenase type 12 (HSD17B12) in the neogastropod Nucella lapillus. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , <b>2013</b> , 134, 8-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 <sup>5.1</sup> | 18 |
| 62 | Seasonal and gender variation of peroxisome proliferator activated receptors expression in brown trout liver. <i>General and Comparative Endocrinology</i> , <b>2009</b> , 161, 146-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                | 18 |
| 61 | Dietary Oil Source and Selenium Supplementation Modulate Fads2 and Elovl5 Transcriptional Levels in Liver and Brain of Meagre (Argyrosomus regius). <i>Lipids</i> , <b>2016</b> , 51, 729-41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6              | 16 |
| 60 | Adaptive evolution of the Retinoid X receptor in vertebrates. <i>Genomics</i> , <b>2012</b> , 99, 81-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.3              | 15 |
| 59 | Evolutionary Exploitation of Vertebrate Peroxisome Proliferator-Activated Receptor by Organotins. <i>Environmental Science &amp; Environmental Science &amp; Env</i> | 10.3             | 15 |
| 58 | Acyl-coenzyme A oxidases 1 and 3 in brown trout (Salmo trutta f. fario): Can peroxisomal fatty acid Ebxidation be regulated by estrogen signaling?. <i>Fish Physiology and Biochemistry</i> , <b>2016</b> , 42, 389-401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7              | 14 |
| 57 | Differences in retinoid levels and metabolism among gastropod lineages: imposex-susceptible gastropods lack the ability to store retinoids in the form of retinyl esters. <i>Aquatic Toxicology</i> , <b>2013</b> , 142-143, 96-103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.1              | 14 |
| 56 | The retinoic acid receptor (RAR) in molluscs: Function, evolution and endocrine disruption insights. <i>Aquatic Toxicology</i> , <b>2019</b> , 208, 80-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.1              | 13 |

| 55 | Cetacea are natural knockouts for IL20. Immunogenetics, 2018, 70, 681-687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.2  | 13 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 54 | Linking chemical exposure to lipid homeostasis: A municipal waste water treatment plant influent is obesogenic for zebrafish larvae. <i>Ecotoxicology and Environmental Safety</i> , <b>2019</b> , 182, 109406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7    | 13 |
| 53 | In vitro exposure of Nile tilapia (Oreochromis niloticus) testis to estrogenic endocrine disrupting chemicals: mRNA expression of genes encoding steroidogenic enzymes. <i>Toxicology Mechanisms and Methods</i> , <b>2012</b> , 22, 47-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.6  | 13 |
| 52 | A mollusk VDR/PXR/CAR-like (NR1J) nuclear receptor provides insight into ancient detoxification mechanisms. <i>Aquatic Toxicology</i> , <b>2016</b> , 174, 61-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.1  | 12 |
| 51 | Estrogenic chemical effects are independent from the degree of sex role reversal in pipefish.<br>Journal of Hazardous Materials, <b>2013</b> , 263 Pt 2, 746-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.8 | 12 |
| 50 | Tributyltin Affects Retinoid X Receptor-Mediated Lipid Metabolism in the Marine Rotifer Brachionus koreanus. <i>Environmental Science &amp; Environmental Sc</i> | 10.3 | 11 |
| 49 | The last frontier: Coupling technological developments with scientific challenges to improve hazard assessment of deep-sea mining. <i>Science of the Total Environment</i> , <b>2018</b> , 627, 1505-1514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.2 | 11 |
| 48 | Estrogenic and anti-estrogenic influences in cultured brown trout hepatocytes: Focus on the expression of some estrogen and peroxisomal related genes and linked phenotypic anchors. <i>Aquatic Toxicology</i> , <b>2015</b> , 169, 133-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.1  | 10 |
| 47 | Diets supplemented with Saccharina latissima influence the expression of genes related to lipid metabolism and oxidative stress modulating rainbow trout (Oncorhynchus mykiss) fillet composition. <i>Food and Chemical Toxicology</i> , <b>2020</b> , 140, 111332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.7  | 10 |
| 46 | LXRIand LXRINuclear Receptors Evolved in the Common Ancestor of Gnathostomes. <i>Genome Biology and Evolution</i> , <b>2017</b> , 9, 222-230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.9  | 10 |
| 45 | A novel Acetyl-CoA synthetase short-chain subfamily member 1 (Acss1) gene indicates a dynamic history of paralogue retention and loss in vertebrates. <i>Gene</i> , <b>2012</b> , 497, 249-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.8  | 10 |
| 44 | ABC transporters, CYP1A and GST[gene transcription patterns in developing stages of the Nile tilapia (Oreochromis niloticus). <i>Gene</i> , <b>2012</b> , 506, 317-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.8  | 10 |
| 43 | The 17beta-hydroxysteroid dehydrogenase 4: Gender-specific and seasonal gene expression in the liver of brown trout (Salmo trutta f. fario). <i>Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology</i> , <b>2009</b> , 153, 157-64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.3  | 10 |
| 42 | The Origin and Diversity of Cpt1 Genes in Vertebrate Species. <i>PLoS ONE</i> , <b>2015</b> , 10, e0138447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7  | 10 |
| 41 | Expansion, retention and loss in the Acyl-CoA synthetase "Bubblegum" (Acsbg) gene family in vertebrate history. <i>Gene</i> , <b>2018</b> , 664, 111-118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.8  | 9  |
| 40 | Transgenerational inheritance of chemical-induced signature: A case study with simvastatin. <i>Environment International</i> , <b>2020</b> , 144, 106020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.9 | 9  |
| 39 | The Singularity of Cetacea Behavior Parallels the Complete Inactivation of Melatonin Gene Modules. <i>Genes</i> , <b>2019</b> , 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.2  | 9  |
| 38 | Unusual loss of chymosin in mammalian lineages parallels neo-natal immune transfer strategies. <i>Molecular Phylogenetics and Evolution</i> , <b>2017</b> , 116, 78-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.1  | 8  |

## (2013-2016)

| 37 | Peroxisome proliferator-activated receptor gamma (PPAR) in brown trout: Interference of estrogenic and androgenic inputs in primary hepatocytes. <i>Environmental Toxicology and Pharmacology</i> , <b>2016</b> , 46, 328-336                                                                | 5.8              | 7 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---|
| 36 | Vitellogenin gene expression in the intertidal blenny Lipophrys pholis: a new sentinel species for estrogenic chemical pollution monitoring in the European Atlantic coast?. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , <b>2009</b> , 149, 58-64 | 3.2              | 7 |
| 35 | The evolutionary road to invertebrate thyroid hormone signaling: Perspectives for endocrine disruption processes. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , <b>2019</b> , 223, 124-138                                                          | 3.2              | 6 |
| 34 | Convergent inactivation of the skin-specific C-C motif chemokine ligand 27 in mammalian evolution. <i>Immunogenetics</i> , <b>2019</b> , 71, 363-372                                                                                                                                         | 3.2              | 6 |
| 33 | PseudoChecker: an integrated online platform for gene inactivation inference. <i>Nucleic Acids Research</i> , <b>2020</b> , 48, W321-W331                                                                                                                                                    | 20.1             | 6 |
| 32 | Of Retinoids and Organotins: The Evolution of the Retinoid X Receptor in Metazoa. <i>Biomolecules</i> , <b>2020</b> , 10,                                                                                                                                                                    | 5.9              | 6 |
| 31 | Anti-androgenic effects of sewage treatment plant effluents in the prosobranch gastropod Nucella lapillus. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , <b>2008</b> , 148, 87-9.                                                                   | 3 <sup>3.2</sup> | 6 |
| 30 | Convergent Loss of the Necroptosis Pathway in Disparate Mammalian Lineages Shapes Viruses Countermeasures. <i>Frontiers in Immunology</i> , <b>2021</b> , 12, 747737                                                                                                                         | 8.4              | 6 |
| 29 | Ecotoxicology of deep-sea environments: Functional and biochemical effects of suspended sediments in the model species Mytilus galloprovincialis under hyperbaric conditions. <i>Science of the Total Environment</i> , <b>2019</b> , 670, 218-225                                           | 10.2             | 5 |
| 28 | Cartilaginous fishes offer unique insights into the evolution of the nuclear receptor gene repertoire in gnathostomes. <i>General and Comparative Endocrinology</i> , <b>2020</b> , 295, 113527                                                                                              | 3                | 5 |
| 27 | A resource for sustainable management: assembly and annotation of the liver transcriptome of the Atlantic chub mackerel,. <i>Data in Brief</i> , <b>2018</b> , 18, 276-284                                                                                                                   | 1.2              | 5 |
| 26 | An Orthologue of the Retinoic Acid Receptor (RAR) Is Present in the Ecdysozoa Phylum Priapulida. <i>Genes</i> , <b>2019</b> , 10,                                                                                                                                                            | 4.2              | 5 |
| 25 | De novo assembly of the kidney and spleen transcriptomes of the cosmopolitan blue shark, Prionace glauca. <i>Marine Genomics</i> , <b>2018</b> , 37, 50-53                                                                                                                                   | 1.9              | 5 |
| 24 | Cross-interference of two model peroxisome proliferators in peroxisomal and estrogenic pathways in brown trout hepatocytes. <i>Aquatic Toxicology</i> , <b>2017</b> , 187, 153-162                                                                                                           | 5.1              | 4 |
| 23 | Evolutionary Plasticity in Detoxification Gene Modules: The Preservation and Loss of the Pregnane X Receptor in Chondrichthyes Lineages. <i>International Journal of Molecular Sciences</i> , <b>2019</b> , 20,                                                                              | 6.3              | 4 |
| 22 | The Echinodermata PPAR: Functional characterization and exploitation by the model lipid homeostasis regulator tributyltin. <i>Environmental Pollution</i> , <b>2020</b> , 263, 114467                                                                                                        | 9.3              | 4 |
| 21 | Sex-steroids and hypolipidemic chemicals impacts on brown trout lipid and peroxisome signaling - Molecular, biochemical and morphological insights. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , <b>2018</b> , 212, 1-17                           | 3.2              | 4 |
| 20 | Pex11In brown trout (Salmo trutta f. fario): Expression dynamics during the reproductive cycle reveals sex-specific seasonal patterns. <i>Comparative Biochemistry and Physiology Part A, Molecular &amp; Marchine Physiology</i> , <b>2013</b> , 164, 207-14                                | 2.6              | 4 |

| 19 | Basal Gnathostomes provide unique insights into the evolution of vitamin B12 binders. <i>Genome Biology and Evolution</i> , <b>2014</b> , 7, 457-64                                                                                                                               | 3.9             | 4  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----|
| 18 | Losing Genes: The Evolutionary Remodeling of Cetacea Skin. <i>Frontiers in Marine Science</i> , <b>2020</b> , 7,                                                                                                                                                                  | 4.5             | 4  |
| 17 | Testosterone-induced modulation of peroxisomal morphology and peroxisome-related gene expression in brown trout (Salmo trutta f. fario) primary hepatocytes. <i>Aquatic Toxicology</i> , <b>2017</b> , 193, 30-39                                                                 | 5.1             | 3  |
| 16 | The Gastric Phenotype in the Cypriniform Loaches: A Case of Reinvention?. <i>PLoS ONE</i> , <b>2016</b> , 11, e01636                                                                                                                                                              | 9 <sub>67</sub> | 3  |
| 15 | A drastic shift in the energetic landscape of toothed whale sperm cells. Current Biology, 2021, 31, 3648-                                                                                                                                                                         | 3∕6,55.∈        | 93 |
| 14 | Molecular ontogeny of the stomach in the catshark Scyliorhinus canicula. <i>Scientific Reports</i> , <b>2019</b> , 9, 586                                                                                                                                                         | 4.9             | 2  |
| 13 | From the Amazon: A comprehensive liver transcriptome dataset of the teleost fish tambaqui,. <i>Data in Brief</i> , <b>2019</b> , 23, 103751                                                                                                                                       | 1.2             | 2  |
| 12 | Cartilaginous fish class II genes reveal unprecedented old allelic lineages and confirm the late evolutionary emergence of DM. <i>Molecular Immunology</i> , <b>2020</b> , 128, 125-138                                                                                           | 4.3             | 2  |
| 11 | A real-time PCR assay for differential expression of vitellogenin I and II genes in the liver of the sentinel fish species Lipophrys pholis. <i>Toxicology Mechanisms and Methods</i> , <b>2013</b> , 23, 591-7                                                                   | 3.6             | 2  |
| 10 | Convergent Cortistatin losses parallel modifications in circadian rhythmicity and energy homeostasis in Cetacea and other mammalian lineages. <i>Genomics</i> , <b>2021</b> , 113, 1064-1070                                                                                      | 4.3             | 2  |
| 9  | An ancestral nuclear receptor couple, PPAR-RXR, is exploited by organotins. <i>Science of the Total Environment</i> , <b>2021</b> , 797, 149044                                                                                                                                   | 10.2            | 2  |
| 8  | Biofortified Diets Containing Algae and Selenised Yeast: Effects on Growth Performance, Nutrient Utilization, and Tissue Composition of Gilthead Seabream () Frontiers in Physiology, <b>2021</b> , 12, 812884                                                                    | 4.6             | 1  |
| 7  | Neuroendocrine pathways at risk? Simvastatin induces inter and transgenerational disruption in the keystone amphipod Gammarus locusta <i>Aquatic Toxicology</i> , <b>2022</b> , 244, 106095                                                                                       | 5.1             | 1  |
| 6  | Regulation of gene expression associated with LC-PUFA metabolism in juvenile tambaqui (Colossoma macropomum) fed different dietary oil sources. <i>Aquaculture Research</i> , <b>2021</b> , 52, 3923-3934                                                                         | 1.9             | 1  |
| 5  | A drastic shift in the energetic landscape of toothed whale sperm cells                                                                                                                                                                                                           |                 | 1  |
| 4  | Silencing of PPARBb mRNA in brown trout primary hepatocytes: effects on molecular and morphological targets under the influence of an estrogen and a PPAR agonist. <i>Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology</i> , <b>2019</b> , 229, 1-9 | 2.3             | 1  |
| 3  | Shedding light on the Chimaeridae taxonomy: the complete mitochondrial genome of the cartilaginous fish (Collett, 1904) (Holocephali: Chimaeridae). <i>Mitochondrial DNA Part B: Resources</i> , <b>2021</b> , 6, 420-422                                                         | 0.5             | 1  |
| 2  | Functional or Vestigial? The Genomics of the Pineal Gland in Xenarthra. <i>Journal of Molecular Evolution</i> , <b>2021</b> , 89, 565-575                                                                                                                                         | 3.1             | 1  |

A Highly Complex, MHC-Linked, 350 Million-Year-Old Shark Nonclassical Class I Lineage. *Journal of Immunology*, **2021**, 207, 824-836

5.3 0