Jie Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11426270/publications.pdf Version: 2024-02-01

LE SHEN

#	Article	IF	CITATIONS
1	Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Research, 2017, 5, 16044.	5.4	731
2	Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation. Science Advances, 2021, 7, .	4.7	196
3	TGF- $\hat{1}^2$ signaling and the development of osteoarthritis. Bone Research, 2014, 2, .	5.4	184
4	LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nature Communications, 2020, 11, 3427.	5.8	169
5	Inflammation and epigenetic regulation in osteoarthritis. Connective Tissue Research, 2017, 58, 49-63.	1.1	164
6	Recent progress in understanding molecular mechanisms of cartilage degeneration during osteoarthritis. Annals of the New York Academy of Sciences, 2011, 1240, 61-69.	1.8	160
7	Deletion of the Transforming Growth Factor β Receptor Type II Gene in Articular Chondrocytes Leads to a Progressive Osteoarthritisâ€like Phenotype in Mice. Arthritis and Rheumatism, 2013, 65, 3107-3119.	6.7	159
8	NOTCH signaling in skeletal progenitors is critical for fracture repair. Journal of Clinical Investigation, 2016, 126, 1471-1481.	3.9	96
9	Conditional activation of β atenin signaling in mice leads to severe defects in intervertebral disc tissue. Arthritis and Rheumatism, 2012, 64, 2611-2623.	6.7	92
10	TGF-Î ² signaling plays an essential role in the growth and maintenance of intervertebral disc tissue. FEBS Letters, 2011, 585, 1209-1215.	1.3	83
11	FoxO1 is a crucial mediator of TGF-β/TAK1 signaling and protects against osteoarthritis by maintaining articular cartilage homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30488-30497.	3.3	62
12	Runx2 plays a central role in Osteoarthritis development. Journal of Orthopaedic Translation, 2020, 23, 132-139.	1.9	56
13	DNA methyltransferase 3b regulates articular cartilage homeostasis by altering metabolism. JCI Insight, 2017, 2, .	2.3	55
14	Distinct metabolic programs induced by TGF-β1 and BMP2 in human articular chondrocytes with osteoarthritis. Journal of Orthopaedic Translation, 2018, 12, 66-73.	1.9	46
15	Distribution and Alteration of Lymphatic Vessels in Knee Joints of Normal and Osteoarthritic Mice. Arthritis and Rheumatology, 2014, 66, 657-666.	2.9	42
16	High oxygen preservation hydrogels to augment cell survival under hypoxic condition. Acta Biomaterialia, 2020, 105, 56-67.	4.1	38
17	Recent Progress in Osteoarthritis Research. Journal of the American Academy of Orthopaedic Surgeons, The, 2014, 22, 467-468.	1.1	30
18	Inhibition of 4-aminobutyrate aminotransferase protects against injury-induced osteoarthritis in mice. JCI Insight, 2019, 4, .	2.3	26

Jie Shen

#	Article	IF	CITATIONS
19	Loss of <i>Dnmt3b</i> in Chondrocytes Leads to Delayed Endochondral Ossification and Fracture Repair. Journal of Bone and Mineral Research, 2018, 33, 283-297.	3.1	25
20	CCN1 Regulates Chondrocyte Maturation and Cartilage Development. Journal of Bone and Mineral Research, 2016, 31, 549-559.	3.1	22
21	Transient gamma-secretase inhibition accelerates and enhances fracture repair likely via Notch signaling modulation. Bone, 2015, 73, 77-89.	1.4	21
22	Ablation of Dnmt3b in chondrocytes suppresses cell maturation during embryonic development. Journal of Cellular Biochemistry, 2018, 119, 5852-5863.	1.2	17
23	Inflammatory osteolysis is regulated by site-specific ISGylation of the scaffold protein NEMO. ELife, 2020, 9, .	2.8	17
24	Activation of βâ€catenin in <i>Col2</i> â€expressing chondrocytes leads to osteoarthritisâ€like defects in hip joint. Journal of Cellular Physiology, 2019, 234, 18535-18543.	2.0	16
25	Deletion of Glut1 in early postnatal cartilage reprograms chondrocytes toward enhanced glutamine oxidation. Bone Research, 2021, 9, 38.	5.4	16
26	Dnmt3b ablation impairs fracture repair through upregulation of Notch pathway. JCI Insight, 2020, 5, .	2.3	15
27	Gasdermin D deficiency attenuates arthritis induced by traumatic injury but not autoantibody-assembled immune complexes. Arthritis Research and Therapy, 2021, 23, 286.	1.6	12
28	Targeting angiogenesis for fracture nonunion treatment in inflammatory disease. Bone Research, 2021, 9, 29.	5.4	11
29	Epigenetic and microRNA regulation during osteoarthritis development. F1000Research, 2015, 4, 1092.	0.8	11
30	Amygdalin Promotes Fracture Healing through TGF- <i>β</i> /Smad Signaling in Mesenchymal Stem Cells. Stem Cells International, 2020, 2020, 1-13.	1.2	10
31	Peripheral Blood Stem Cell Therapy Does Not Improve Outcomes of Femoral Head Osteonecrosis With Capâ€6haped Separated Cartilage Defect. Journal of Orthopaedic Research, 2020, 38, 269-276.	1.2	8
32	Epigenetic and therapeutic implications of dnmt3b in temporomandibular joint osteoarthritis. American Journal of Translational Research (discontinued), 2019, 11, 1736-1747.	0.0	8
33	Otto Aufranc Award: Identification of Key Molecular Players in the Progression of Hip Osteoarthritis Through Transcriptomes and Epigenetics. Journal of Arthroplasty, 2022, 37, S391-S399.	1.5	7
34	Fracture healing is delayed in the absence of gasdermin-interleukin-1 signaling. ELife, 2022, 11, .	2.8	7
35	Inhibition of the Prostaglandin EP-1 Receptor in Periosteum Progenitor Cells Enhances Osteoblast Differentiation and Fracture Repair. Annals of Biomedical Engineering, 2020, 48, 927-939.	1.3	4
36	Isolation and Culture of Periosteum-Derived Progenitor Cells from Mice. Methods in Molecular Biology, 2021, 2230, 397-413.	0.4	2

0

#	Article	IF	CITATIONS
37	Regulation of the Inflammatory Process in Osteoarthritis. , 2020, , 658-675.		Ο

Stem cells and regenerative medicine for musculoskeletal tissue. , 2022, , 319-360.

4