Takeshi Taniguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1142308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Land-use types and soil chemical properties influence soil microbial communities in the semiarid Loess Plateau region in China. Scientific Reports, 2017, 7, 45289.	3.3	87
2	Does conversion from natural forest to plantation affect fungal and bacterial biodiversity, community structure, and co-occurrence networks in the organic horizon and mineral soil?. Forest Ecology and Management, 2019, 446, 238-250.	3.2	75
3	Does ectomycorrhizal fungal community structure vary along a Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia) gradient?. New Phytologist, 2007, 173, 322-334.	7.3	63
4	Plant growth and nutrition in pine (Pinus thunbergii) seedlings and dehydrogenase and phosphatase activity of ectomycorrhizal root tips inoculated with seven individual ectomycorrhizal fungal species at high and low nitrogen conditions. Soil Biology and Biochemistry, 2008, 40, 1235-1243.	8.8	45
5	Comparison of the bacterial communities established on the mycorrhizae formed on Pinus thunbergii root tips by eight species of fungi. Plant and Soil, 2008, 304, 267-275.	3.7	40
6	The Impacts of Soil Fertility and Salinity on Soil Nitrogen Dynamics Mediated by the Soil Microbial Community Beneath the Halophytic Shrub Tamarisk. Microbial Ecology, 2018, 75, 985-996.	2.8	39
7	Ectomycorrhizal fungal communities of <i>Quercus liaotungensis</i> along local slopes in the temperate oak forests on the Loess Plateau, China. Ecological Research, 2013, 28, 297-305.	1.5	28
8	Inhibition of the regeneration of Japanese black pine (<i>Pinus thunbergii</i>) by black locust (<i>Robinia pseudoacacia</i>) in coastal sand dunes. Journal of Forest Research, 2007, 12, 350-357.	1.4	26
9	Soil nitrogen cycling is determined by the competition between mycorrhiza and ammoniaâ€oxidizing prokaryotes. Ecology, 2020, 101, e02963.	3.2	26
10	High salt tolerant plant growth promoting rhizobacteria from the common ice-plant Mesembryanthemum crystallinum L. Rhizosphere, 2019, 9, 10-17.	3.0	25
11	A pulse of summer precipitation after the dry season triggers changes in ectomycorrhizal formation, diversity, and community composition in a Mediterranean forest in California, USA. Mycorrhiza, 2018, 28, 665-677.	2.8	24
12	Vertical distribution of fine roots of Tamarix ramosissima in an arid region of southern Nevada. Journal of Arid Environments, 2013, 92, 46-52.	2.4	23
13	Net primary production, nitrogen cycling, biomass allocation, and resource use efficiency along a topographical soil water and nitrogen gradient in a semi-arid forest near an arid boundary. Plant and Soil, 2017, 420, 209-222.	3.7	20
14	Ectomycorrhizae and Their Importance in Forest Ecosystems. , 2008, , 241-285.		20
15	The steps in the soil nitrogen transformation process vary along an aridity gradient via changes in the microbial community. Biogeochemistry, 2019, 144, 15-29.	3.5	19
16	Colonization and community structure of root-associated microorganisms of Sabina vulgaris with soil depth in a semiarid desert ecosystem with shallow groundwater. Mycorrhiza, 2012, 22, 419-428.	2.8	18
17	Arbuscular mycorrhizal fungal communities under gradients of grazing in Mongolian grasslands of different aridity. Mycorrhiza, 2018, 28, 621-634.	2.8	16
18	Fungal selectivity of two mycorrhiza helper bacteria on five mycorrhizal fungi associated with Pinus thunbergii. World Journal of Microbiology and Biotechnology, 2009, 25, 1815-1819.	3.6	13

Takeshi Taniguchi

#	Article	IF	CITATIONS
19	Ectomycorrhizal fungal communities of <i>Quercus liaotungensis</i> along different successional stands on the Loess Plateau, China. Journal of Forest Research, 2014, 19, 395-403.	1.4	13
20	Diet of sympatric wild and domestic ungulates in southern Mongolia by DNA barcoding analysis. Journal of Mammalogy, 2018, 99, 450-458.	1.3	13
21	Salt dynamics in Tamarix ramosissima in the lower Virgin River floodplain, Nevada. Trees - Structure and Function, 2013, 27, 949-958.	1.9	12
22	Inorganic and organic osmolytes accumulation in five halophytes growing in saline habitats around the Aiding Lake area in Turpan Basin, Northwest China. Arid Land Research and Management, 2016, 30, 421-431.	1.6	12
23	Identification of <i>Cylindrocladium</i> sp. causing damping-off disease of Japanese black pine (<i>Pinus thunbergii</i>) and factors affecting the disease severity in a black locust (<i>Robinia) Tj ETQq1 1 0.7</i>	84 31 4 rgB	BT /Qverlock
24	Plantation soil inoculation combined with straw checkerboard barriers enhances ectomycorrhizal colonization and subsequent growth of nursery grown Pinus tabulaeformis seedlings in a dryland. Ecological Engineering, 2021, 163, 106191.	3.6	10
25	Microbial functions and soil nitrogen mineralisation processes in the soil of a cool temperate forest in northern Japan. Biogeochemistry, 2021, 155, 359-379.	3.5	10
26	Effect of soil salinity and nutrient levels on the community structure of the root-associated bacteria of the facultative halophyte, <i>Tamarix ramosissima</i> , in southwestern United States. Journal of General and Applied Microbiology, 2015, 61, 193-202.	0.7	8
27	Arbuscular mycorrhizal colonization of Tamarix ramosissima along a salinity gradient in the southwestern United States. Landscape and Ecological Engineering, 2015, 11, 221-225.	1.5	8
28	Gas exchange by the mesic-origin, arid land plantation species Robinia pseudoacacia under annual summer reduction in plant hydraulic conductance. Tree Physiology, 2018, 38, 1166-1179.	3.1	8
29	Communities of arbuscular mycorrhizal fungi in forest ecosystems in Japan's temperate region may be primarily constituted by limited fungal taxa. Mycorrhiza, 2020, 30, 257-268.	2.8	8
30	Dominance of limited arbuscular mycorrhizal fungal generalists of <i>Sorghum bicolor</i> in a semi-arid region in Sudan. Soil Science and Plant Nutrition, 2019, 65, 570-578.	1.9	7
31	Arbuscular Mycorrhizal Community in Roots and Nitrogen Uptake Patterns of Understory Trees Beneath Ectomycorrhizal and Non-ectomycorrhizal Overstory Trees. Frontiers in Plant Science, 2020, 11, 583585.	3.6	6
32	Dominance of arbuscular mycorrhizal fungi is key for Mongolian steppe management under livestock grazing, as indicated by ecosystem multifunctionality. Ecological Indicators, 2022, 136, 108686.	6.3	6
33	Distribution of Bacterial Species in Soil with a Vegetational Change from Japanese Black Pine (Pinus) Tj ETQq1 1	0.784314 1.6	rgBT /Overic
34	Effect of Soil Microbiome from Church Forest in the Northwest Ethiopian Highlands on the Growth of Olea europaea and Albizia gummifera Seedlings under Glasshouse Conditions. Sustainability, 2020, 12, 4976.	3.2	5
35	Micro-catchment water harvesting-based rehabilitation ameliorated soil microbial abundance, diversity and function in a degraded dryland. Applied Soil Ecology, 2021, 164, 103938.	4.3	5
36	Quantification of Wautersia [Ralstonia] basilensis in the mycorrhizosphere of Pinus thunbergii Parl. and its effect on mycorrhizal formation. Soil Biology and Biochemistry, 2009, 41, 2147-2152.	8.8	4

Takeshi Taniguchi

#	Article	IF	CITATIONS
37	Phytoremediation of calcareous saline-sodic soils with mesquite (<i>Prosopis glandulosa</i>). Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2017, 67, 352-361.	0.6	4
38	Pyrosequencing scrutiny of bacterial and fungal communities in two Sudanese sorghum-based fermented foods. Annals of Microbiology, 2020, 70, .	2.6	4
39	Distribution of ectomycorrhizal and pathogenic fungi in soil along a vegetational change from Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia). Mycorrhiza, 2009, 19, 231-238.	2.8	3
40	Proteomic analysis of homocholine catabolic pathway in Pseudomonas sp. strain A9. Process Biochemistry, 2015, 50, 1735-1747.	3.7	3
41	Arbuscular mycorrhizal fungal communities of a mangrove forest along a salinity gradient on Iriomote Island. Plant and Soil, 2022, 472, 145-159.	3.7	3
42	Distribution of Frankia and ectomycorrhizal fungi in a denuded volcanic soil exposed by a landslide during heavy rainfall caused by typhoon No. 26 (Wipha) in 2013. Journal of Forest Research, O, , 1-7.	1.4	3
43	Osmolyte accumulation in leaves of Tamarix ramosissima growing under various soil conditions in the Colorado River basin. Landscape and Ecological Engineering, 2015, 11, 199-207.	1.5	2
44	Soil prokaryotic community structure is determined by a plant-induced soil salinity gradient rather than other environmental parameters associated with plant presence in a saline grassland. Journal of Arid Environments, 2020, 176, 104100.	2.4	2
45	Effects of livestock grazing intensity on soil arbuscular mycorrhizal fungi and glomalin-related soil protein in a mountain forest steppe and a desert steppe of Mongolia. Landscape and Ecological Engineering, 2021, 17, 253-265.	1.5	2
46	Differences in the short-term responses of soil nitrogen and microbial dynamics to soil moisture variation in two adjacent dryland forests. European Journal of Soil Biology, 2022, 110, 103394.	3.2	2
47	Identification of the key genes involved in the degradation of homocholine by Pseudomonas sp. strain A9 by using suppression subtractive hybridization. Process Biochemistry, 2017, 52, 94-105.	3.7	1
48	Early establishment of spruce (<i>Picea glehnii</i> [Fr. Schm.] Masters) seedlings on disturbed soil with the aim of assisted natural regeneration. Scandinavian Journal of Forest Research, 2021, 36, 126-134.	1.4	1
49	Survival Rate, Chemical and Microbial Properties of Oak Seedlings Planted with or without Oak Forest Soils in a Black Locust Forest of a Dryland. Forests, 2021, 12, 669.	2.1	0
50	Chemicals behind the use of Strombus tricornis opercula in traditional sudanese perfumery and medicine. Journal of Bioscience and Bioengineering, 2022, , .	2.2	0