Bijan Tehrani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11422908/publications.pdf

Version: 2024-02-01

		1937685	2053705	
14	191	4	5	
papers	citations	h-index	g-index	
15	15	15	240	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	Multilayer Inkjet Printing of Millimeter-Wave Proximity-Fed Patch Arrays on Flexible Substrates. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 1351-1354.	4.0	75
2	Exploring 3-D Printing for New Applications: Novel Inkjet- and 3-D-Printed Millimeter-Wave Components, Interconnects, and Systems. IEEE Microwave Magazine, 2018, 19, 57-66.	0.8	37
3	Nanotechnology-Empowered Flexible Printed Wireless Electronics: A Review of Various Applications of Printed Materials. IEEE Nanotechnology Magazine, 2019, 13, 18-29.	1.3	19
4	Fully inkjet-printed multilayer microstrip patch antenna for Ku-band applications. , 2014, , .		9
5	The Principles of "Smart" Encapsulation: Using Additive Printing Technology for the Realization of Intelligent Application-Specific Packages for IoT, 5G, and Automotive Radar Applications. , 2018, , .		9
6	Inkjet printing of a wideband, high gain mm-Wave Vivaldi antenna on a flexible organic substrate. , 2014, , .		7
7	A Fully 3D Printed Multi-Chip Module with an On-Package Enhanced Dielectric Lens for mm-Wave Applications Using Multimaterial Stereo-lithography. , 2018, , .		6
8	Radar & additive manufacturing technologies: The future of Internet of Things (IoT)., 2018,,.		6
9	A novel additive-manufactured multiple-infill ultra-lightweight cavity-backed slot antenna for UWB applications. , $2017, , .$		5
10	Novel Additively Manufactured Packaging Approaches for 5G/mm-Wave Wireless Modules. , 2019, , .		5
11	Nanotechnology-Enabled Additively-Manufactured RF and Millimeter-wave Electronics., 2018,,.		4
12	Additively Manufactured "Smart―RF/mm-Wave Packaging Structures: A Quantum Leap for On-Demand Customizable Integrated 5G and Internet of Things Modules. IEEE Microwave Magazine, 2022, 23, 94-106.	0.8	4
13	Coupled Lines for Wearable Power Dividers: Coupled Transmission-Line Sections for Power Dividers in Wearable and Flexible RF Electronics. IEEE Microwave Magazine, 2020, 21, 66-87.	0.8	3
14	An Inkjet-printed Origami-based Frequency Selective Surface with Wide Frequency and Bandwidth Tunability. , $2018, $, .		0