
Lingzhou Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11422194/publications.pdf Version: 2024-02-01

Ι ΙΝΟΖΗΟΗ ΖΗΛΟ

#	Article	IF	CITATIONS
1	Antibacterial coatings on titanium implants. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 470-480.	1.6	732
2	Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials, 2011, 32, 5706-5716.	5.7	670
3	The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials, 2010, 31, 5072-5082.	5.7	401
4	Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials, 2014, 35, 4255-4265.	5.7	319
5	The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials, 2014, 35, 4223-4235.	5.7	305
6	Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation. Biomaterials, 2012, 33, 2629-2641.	5.7	273
7	Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. Biomaterials, 2013, 34, 3467-3478.	5.7	269
8	The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials, 2013, 34, 19-29.	5.7	212
9	Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Acta Biomaterialia, 2016, 33, 311-321.	4.1	161
10	Fabrication, modification, and biomedical applications of anodized TiO ₂ nanotube arrays. RSC Advances, 2014, 4, 17300-17324.	1.7	124
11	The role of sterilization in the cytocompatibility of titania nanotubes. Biomaterials, 2010, 31, 2055-2063.	5.7	112
12	The role of integrin-linked kinase/β-catenin pathway in the enhanced MG63 differentiation by micro/nano-textured topography. Biomaterials, 2013, 34, 631-640.	5.7	99
13	The role of the Wnt∫î²-catenin pathway in the effect of implant topography on MG63 differentiation. Biomaterials, 2012, 33, 7993-8002.	5.7	91
14	Non-viral oligonucleotide antimiR-138 delivery to mesenchymal stem cell sheets and the effect on osteogenesis. Biomaterials, 2014, 35, 7734-7749.	5.7	87
15	Hypoxia-mimicking Co doped TiO2 microporous coating on titanium with enhanced angiogenic and osteogenic activities. Acta Biomaterialia, 2016, 43, 358-368.	4.1	69
16	Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities. Scientific Reports, 2016, 6, 29069.	1.6	61
17	Nanostructured titanium–silver coatings with good antibacterial activity and cytocompatibility fabricated by one-step magnetron sputtering. Applied Surface Science, 2015, 355, 32-44.	3.1	56
18	Involvement of ILK/ERK1/2 and ILK/p38 pathways in mediating the enhanced osteoblast differentiation by micro/nanotopography. Acta Biomaterialia, 2014, 10, 3705-3715.	4.1	55

LINGZHOU ZHAO

#	Article	IF	CITATIONS
19	Mechanism of cell repellence on quasi-aligned nanowire arrays on Ti alloy. Biomaterials, 2010, 31, 8341-8349.	5.7	52
20	MicroRNA Functionalized Microporous Titanium Oxide Surface by Lyophilization with Enhanced Osteogenic Activity. ACS Applied Materials & Interfaces, 2013, 5, 2733-2744.	4.0	52
21	Fabrication of Ni-Ti-O nanotube arrays by anodization of NiTi alloy and their potential applications. Scientific Reports, 2014, 4, 7547.	1.6	52
22	The osteogenic capacity of biomimetic hierarchical micropore/nanorod-patterned Sr-HA coatings with different interrod spacings. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1161-1173.	1.7	52
23	Involvement of N-cadherin/β-catenin interaction in the micro/nanotopography induced indirect mechanotransduction. Biomaterials, 2014, 35, 6206-6218.	5.7	48
24	Biofunctional Elements Incorporated Nano/Microstructured Coatings on Titanium Implants with Enhanced Osteogenic and Antibacterial Performance. Advanced Healthcare Materials, 2020, 9, e2000681.	3.9	42
25	Osteogenic and angiogenic activities of silicon-incorporated TiO2 nanotube arrays. Journal of Materials Chemistry B, 2016, 4, 5548-5559.	2.9	39
26	In vivo osseointegration of Ti implants with a strontium-containing nanotubular coating. International Journal of Nanomedicine, 2016, 11, 1003.	3.3	36
27	Chitosan/siCkip-1 biofunctionalized titanium implant for improved osseointegration in the osteoporotic condition. Scientific Reports, 2015, 5, 10860.	1.6	33
28	Initial osteoblast functions on Tiâ€5Zrâ€3Snâ€5Moâ€15Nb titanium alloy surfaces modified by microarc oxidation. Journal of Biomedical Materials Research - Part A, 2010, 92A, 432-440.	2.1	28
29	Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration. International Journal of Nanomedicine, 2015, 10, 4009.	3.3	28
30	Antibacterial, angiogenic, and osteogenic activities of Ca, P, Co, F, and Sr compound doped titania coatings with different Sr content. Scientific Reports, 2019, 9, 14203.	1.6	27
31	F-Doped Micropore/Nanorod Hierarchically Patterned Coatings for Improving Antibacterial and Osteogenic Activities of Bone Implants in Bacteria-Infected Cases. ACS Biomaterials Science and Engineering, 2017, 3, 1437-1450.	2.6	26
32	Titanium implant functionalized with antimiR-138 delivered cell sheet for enhanced peri-implant bone formation and vascularization. Materials Science and Engineering C, 2018, 89, 52-64.	3.8	24
33	Stability of titania nanotube arrays in aqueous environment and the related factors. Scientific Reports, 2016, 6, 23065.	1.6	23
34	Suppressed primary osteoblast functions on nanoporous titania surface. Journal of Biomedical Materials Research - Part A, 2011, 96A, 100-107.	2.1	22
35	Biofunctionalization of titanium implant with chitosan/siRNA complex through loading-controllable and time-saving cathodic electrodeposition. Journal of Materials Chemistry B, 2015, 3, 8567-8576.	2.9	21
36	Chitosan-miRNA functionalized microporous titanium oxide surfaces via a layer-by-layer approach with a sustained release profile for enhanced osteogenic activity. Journal of Nanobiotechnology, 2020, 18, 127.	4.2	20

LINGZHOU ZHAO

#	Article	IF	CITATIONS
37	Nanorod diameter modulated osteogenic activity of hierarchical micropore/nanorod-patterned coatings via a Wnt/β-catenin pathway. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1719-1731.	1.7	19
38	MiR-148b laden titanium implant promoting osteogenic differentiation of rat bone marrow mesenchymal stem cells. RSC Advances, 2013, 3, 11292.	1.7	14
39	Biomimetic Titanium Alloy with Sparsely Distributed Nanotubes Could Enhance Osteoblast Functions. Advanced Engineering Materials, 2012, 14, B166.	1.6	13
40	Induction of osteogenic differentiation of stem cells via a lyophilized microRNA reverse transfection formulation on a tissue culture plate. International Journal of Nanomedicine, 2013, 8, 1595.	3.3	9
41	Low-magnitude mechanical vibration may be applied clinically to promote dental implant osseointegration. Medical Hypotheses, 2009, 72, 451-452.	0.8	4
42	Titania Nanotube Coatings on Dental Implants with Enhanced Osteogenic Activity and Anti-Infection Properties. , 2013, , 337-357.		1
43	Improved Fibroblast Functionalities by Microporous Pattern Fabricated by Microelectromechanical Systems. International Journal of Molecular Sciences, 2014, 15, 12998-13009.	1.8	1
44	Influence of annealing on cytocompatibility of anodized nanoscale titania surfaces. , 2010, , .		0