
Evgenyi B Faizuloev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1142009/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Knockdown of <i>FLT4</i> , <i>Nup98</i> , and <i>Nup205</i> cellular genes as a suppressor for the viral activity of Influenza A/WSN/33 (H1N1) in A549 cell culture. Fine Chemical Technologies, 2022, 16, 476-489.	0.1	3
2	Creation of a model for studying the antiviral effect of small interfering RNAs in vitro. Sanitarnyj VraÄ , 2022, , 65-74.	0.1	0
3	Knockdown of FLT4, Nup98, and Nup205 Cellular Genes Effectively Suppresses the Reproduction of Influenza Virus Strain A/WSN/1933 (H1N1) In vitro. Infectious Disorders - Drug Targets, 2022, 22, .	0.4	3
4	Molecular and genetic characteristics of group A rotaviruses detected in Moscow in 2015–2020. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2022, 99, 7-19.	0.3	4
5	Investigation of the anti-influenza activity of siRNA complexes against the cellular genes <i>FLT4, Nup98</i> , and <i>Nup205 in vitro</i> . Fine Chemical Technologies, 2022, 17, 140-151.	0.1	2
6	New approach of genetic characterization of group A rotaviruses by the nanopore sequencing method. Journal of Virological Methods, 2021, 292, 114114.	1.0	6
7	Adaptation of the MTT assay for detection of neutralizing antibodies against the SARS-CoV-2 virus. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2021, 98, 253-265.	0.3	10
8	Local antiviral activity of the drug «Thymogen®», nasal dosed spray, against SARS-CoV-2 coronavirus <i>in vitro</i> . Antibiotiki I Khimioterapiya, 2021, 66, 11-16.	0.1	1
9	Antiviral Activity of Umifenovir In Vitro against a Broad Spectrum of Coronaviruses, Including the Novel SARS-CoV-2 Virus. Viruses, 2021, 13, 1665.	1.5	17
10	Possibilities of suppressing the cytopathogenic effect of SARS-CoV-2 coronavirus according to the results of the antiviral activity of Cytovir®-3 <i>in vitro</i> study. Antibiotiki I Khimioterapiya, 2021, 66, 4-10.	0.1	4
11	Potential of application of the RNA interference phenomenon in the treatment of new coronavirus infection COVID-19. Voprosy Virusologii, 2021, 66, 241-251.	0.1	4
12	Viral Membrane Fusion Proteins and RNA Sorting Mechanisms for the Molecular Delivery by Exosomes. Cells, 2021, 10, 3043.	1.8	7
13	The Prevalence of High- and Low-Risk Human Papillomaviruses in the Russian Federation. Molecular Genetics, Microbiology and Virology, 2021, 36, 192-200.	0.0	1
14	The Susceptibility of Human Melanoma Cells to Infection with the Leningrad-16 Vaccine Strain of Measles Virus. Viruses, 2020, 12, 173.	1.5	13
15	Rapid diagnostics of genital herpes by loop-mediated isothermal amplification method with fluorescent detection. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2019, , 40-46.	0.3	2
16	Molecular-Genetic Characterization of Human Rotavirus A Strains Circulating in Moscow, Russia (2009–2014). Virologica Sinica, 2018, 33, 304-313.	1.2	12
17	Cationic nanogels as Trojan carriers for disruption of endosomes. Colloids and Surfaces B: Biointerfaces, 2015, 136, 981-988.	2.5	6
18	Cross-linking as a tool for enhancement of transfection efficiency of cationic vectors. European Polymer Journal, 2015, 69, 110-120.	2.6	5

#	Article	IF	CITATIONS
19	Quantification of measles, mumps and rubella viruses using real-time quantitative TaqMan-based RT-PCR assay. Journal of Virological Methods, 2013, 187, 57-64.	1.0	18
20	Synthesis of poly(N,N-dimethylaminoethyl methacrylate) nanogels in reverse micelles for delivery of plasmid DNA and small interfering RNAs into living cells. Polymer Science - Series C, 2012, 54, 69-79.	0.8	9
21	Water-soluble N-[(2-hydroxy-3-trimethylammonium)propyl]chitosan chloride as a nucleic acids vector for cell transfection. Carbohydrate Polymers, 2012, 89, 1088-1094.	5.1	41
22	A study of molecular mechanisms of rubella virus attenuation evidenced from the Russian C-77 strain. Molecular Genetics, Microbiology and Virology, 2012, 27, 120-126.	0.0	1
23	Inhibition of Respiratory Syncytial Virus (RSV) Replication in Cell Culture by Small Interfering RNA (siRNA). Journal of Allergy and Clinical Immunology, 2007, 119, S233-S234.	1.5	1