
K Yamuna Rani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11418022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iterative EKF as a Controller in Novel MPC Formulation: First Principles Model Based IEKF-MPC for SISO Systems. Computers and Chemical Engineering, 2022, , 107833.	3.8	2
2	Kinetic modeling of liquidâ€phase esterification of acetic acid with n â€butanol using heterogeneous poly(o â€methylene p â€ŧoluene sulfonic acid) as catalyst. International Journal of Chemical Kinetics, 2020, 52, 822-837.	1.6	2
3	Comparative assessment of performances of different oxygen carriers in a chemical looping combustion coupled intensified reforming process through simulation study. Journal of Cleaner Production, 2020, 262, 121146.	9.3	12
4	Molecular Weight Control in Semi Batch Copolymerization Reactor through Temperature Tracking: Evaluation of Control Strategies. , 2019, , .		0
5	Robust Trajectory Tracking in a Reactive Batch Distillation Process using Multirate Nonlinear Internal Model Control. Industrial & Engineering Chemistry Research, 2019, 58, 11364-11381.	3.7	5
6	Multiobjective optimization and experimental validation for batch cooling crystallization of citric acid anhydrate. Computers and Chemical Engineering, 2018, 112, 292-303.	3.8	14
7	Adaptive Generic Model Control of Multivariable Processes: Application to Semi-Batch Reactors with Different Relative Degrees. Chemical Engineering Communications, 2017, 204, 607-617.	2.6	2
8	Multiobjective Optimization of Unseeded and Seeded Batch Cooling Crystallization Processes. Industrial & Engineering Chemistry Research, 2017, 56, 6012-6021.	3.7	14
9	Self-sustained process scheme for high purity hydrogen production using sorption enhanced steam methane reforming coupled with chemical looping combustion. Journal of Cleaner Production, 2017, 162, 687-701.	9.3	37
10	Multi-objective optimization of a reactive batch distillation process using reduced order model. Computers and Chemical Engineering, 2017, 106, 40-56.	3.8	18
11	Nonlinear control strategies based on Adaptive ANN models: Multi-product semi-batch polymerization reactor case study. Chemical Engineering Research and Design, 2017, 121, 255-274.	5.6	4
12	Application of artificial neural networkâ€based generic model control to multivariable processes. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 775-789.	1.5	1
13	Parameterized data-driven fuzzy model based optimal control of a semi-batch reactor. ISA Transactions, 2016, 64, 418-430.	5.7	6
14	Solvent resistant chitosan/poly(ether-block-amide) composite membranes for pervaporation of n-methyl-2-pyrrolidone/water mixtures. Carbohydrate Polymers, 2016, 136, 1170-1181.	10.2	46
15	Prediction of vapour–liquid coexistence data of Phenylacetylcarbinol. Fluid Phase Equilibria, 2014, 364, 6-14.	2.5	4
16	Experimental analysis in different batch operating units for process intensification: methyl acetate production case study. International Journal of Industrial Chemistry, 2014, 5, 85-93.	3.1	6
17	Prediction of Vapor–Liquid Coexistence Data for p-Cymene Using Equation of State Methods and Monte Carlo Simulations. Journal of Chemical & Engineering Data, 2014, 59, 2987-2994.	1.9	6
18	Comparative Study of Different Cascade Control Configurations for a Multiproduct Semibatch Polymerization Reactor. Industrial & Engineering Chemistry Research, 2014, 53, 14735-14754.	3.7	13

K Yamuna Rani

#	Article	IF	CITATIONS
19	Separation of NMP/water mixtures by nanocomposite PEBA membrane: Part I. Membrane synthesis, characterization and pervaporation performance. Desalination, 2013, 330, 1-8.	8.2	40
20	A Review on Property Estimation Methods and Computational Schemes for Rational Solvent Design: A Focus on Pharmaceuticals. Industrial & Engineering Chemistry Research, 2013, 52, 6869-6893.	3.7	25
21	A Simple Algorithm for Vapor–Liquid–Liquid Equilibrium Computation. Industrial & Engineering Chemistry Research, 2012, 51, 10719-10730.	3.7	7
22	Sensitivity compensating nonlinear control: Exact model based approach. Journal of Process Control, 2012, 22, 564-582.	3.3	7
23	Sensitivity Compensating Control: Data-driven model based adaptive approach. Journal of Process Control, 2011, 21, 1265-1286.	3.3	13
24	Development of kinetic models for acidâ€catalyzed methyl acetate formation reaction: Effect of catalyst concentration and water inhibition. International Journal of Chemical Kinetics, 2011, 43, 263-277.	1.6	11
25	Data-Driven Model Based Control of a Multi-Product Semi-Batch Polymerization Reactor. Chemical Engineering Research and Design, 2007, 85, 1397-1406.	5.6	18
26	EXTENDED KALMAN FILTER CONTROLLER: FIRST PRINCIPLES MODELS TO NEURAL NETWORKS. Chemical Engineering Communications, 2006, 193, 1294-1320.	2.6	4
27	Data-Driven Modeling and Optimization of Semibatch Reactors Using Artificial Neural Networksâ€. Industrial & Engineering Chemistry Research, 2004, 43, 7539-7551.	3.7	13
28	Control of fermenters – a review. Bioprocess and Biosystems Engineering, 1999, 21, 77-88.	0.5	142
29	AUTOMATICALLY CONFIGURING RADIAL BASIS FUNCTION NEURAL NETWORKS FOR NONLINEAR INTERNAL MODEL CONTROL. Chemical Engineering Communications, 1999, 172, 225-250.	2.6	3
30	Adaptive generic model control: Dual composition control of distillation. AICHE Journal, 1991, 37, 1634-1644.	3.6	33