Fadhil K Alfadhili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11417809/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Back Buffer Layers and Absorber Properties for >25% Efficient CdTe Solar Cells. ACS Applied Energy Materials, 2019, 2, 5419-5426.	5.1	66
2	Enabling bifacial thin film devices by developing a back surface field using CuxAlOy. Nano Energy, 2021, 83, 105827.	16.0	32
3	Understanding and Advancing Bifacial Thin Film Solar Cells. ACS Applied Energy Materials, 2020, 3, 6072-6078.	5.1	31
4	The Effects of Hydrogen lodide Back Surface Treatment on CdTe Solar Cells. Solar Rrl, 2019, 3, 1800304.	5.8	29
5	Thin film iron pyrite deposited by hybrid sputtering/co-evaporation as a hole transport layer for sputtered CdS/CdTe solar cells. Solar Energy Materials and Solar Cells, 2017, 163, 277-284.	6.2	26
6	Selective Cd Removal From CdTe for High-Efficiency Te Back-Contact Formation. IEEE Journal of Photovoltaics, 2018, 8, 1125-1131.	2.5	24
7	Controlling Band Alignment at the Back Interface of Cadmium Telluride Solar Cells using ZnTe and Te Buffer Layers. MRS Advances, 2019, 4, 913-919.	0.9	15
8	Back-Surface Passivation of CdTe Solar Cells Using Solution-Processed Oxidized Aluminum. ACS Applied Materials & Interfaces, 2020, 12, 51337-51343.	8.0	15
9	CuSCN as the Back Contact for Efficient ZMO/CdTe Solar Cells. Materials, 2020, 13, 1991.	2.9	13
10	Reduced Recombination and Improved Performance of CdSe/CdTe Solar Cells due to Cu Migration Induced by Light Soaking. ACS Applied Materials & Interfaces, 2022, 14, 19644-19651.	8.0	12
11	Wet chemical etching of cadmium telluride photovoltaics for enhanced open-circuit voltage, fill factor, and power conversion efficiency. Journal of Materials Research, 2019, 34, 3988-3997.	2.6	11
12	Very high V _{OC} and FF of CdTe thinâ€film solar cells with the applications of organoâ€metallic halide perovskite thin film as a hole transport layer. Progress in Photovoltaics: Research and Applications, 2020, 28, 1024-1033.	8.1	8
13	Development of CdCl2 Activation to Minimize Zn Loss from Sputtered Cd1-xZnxTe Thin Films for Use in Tandem Solar Cells. MRS Advances, 2018, 3, 3129-3134.	0.9	7
14	Room Temperature Processed Transparent Cu-Zn-S Nanocomposites as Hole Transport Materials in CdTe Photovoltaics. , 2019, , .		4
15	Numerical Modelling of Front Contact Alignment for High Efficiency Cd1-xZnxTe and Cd1-xMgxTe Solar Cells for Tandem Devices. MRS Advances, 2018, 3, 3121-3128.	0.9	3
16	Successive Ionic Layer Adsorption and Reactionâ€Deposited Transparent Cu–Zn–S Nanocomposites as Hole Transport Materials in CdTe Photovoltaics. Energy Technology, 2020, 8, 2000429.	3.8	3
17	Novel, Facile Back Surface Treatment for CdTe Solar Cells. , 2017, , .		2
18	Use of Single Wall Carbon Nanotube films doped with Triethyloxonium Hexachlorantimonate as a Transparent Back Contact for CdTe Solar Cells. , 2017, , .		2