Yulya A Azarova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1141772/publications.pdf Version: 2024-02-01

ΥΠΙΧΑ Δ ΔΖΑΡΟΝΑ

#	Article	IF	CITATIONS
1	Peculiarities of Pore Water Ionic Composition in the Bottom Sediments and Subsea Permafrost: A Case Study in the Buor-Khaya Bay. Geosciences (Switzerland), 2022, 12, 49.	2.2	2
2	Composite Zn(II) Ferrocyanide/Polyethylenimine Cryogels for Point-of-Use Selective Removal of Cs-137 Radionuclides. Molecules, 2021, 26, 4604.	3.8	4
3	Dataset on pore water composition and grain size properties of bottom sediments and subsea permafrost from the Buor-Khaya Bay (Laptev Sea). Data in Brief, 2021, 39, 107580.	1.0	3
4	Extended Rate Constant Distribution Model for Sorption in Heterogeneous Systems. 1: Application to Kinetics of Metal Ion Sorption on Polyethyleneimine Cryogels. Industrial & Engineering Chemistry Research, 2020, 59, 1123-1134.	3.7	6
5	Extended Rate Constant Distribution Model for Sorption in Heterogeneous Systems: 3. From Batch to Fixed-Bed Application and Predictive Modeling. Industrial & Engineering Chemistry Research, 2020, 59, 19415-19425.	3.7	3
6	Supermacroporous monoliths based on polyethyleneimine: Fabrication and sorption properties under static and dynamic conditions. Journal of Environmental Chemical Engineering, 2020, 8, 104395.	6.7	17
7	Spark plasma sintering-reactive synthesis of SrWO4 ceramic matrices for 90Sr immobilization. Vacuum, 2020, 180, 109628.	3.5	24
8	Rational Design of Polyamine-Based Cryogels for Metal Ion Sorption. Molecules, 2020, 25, 4801.	3.8	9
9	Extended Rate Constants Distribution (RCD) Model for Sorption in Heterogeneous Systems: 2. Importance of Diffusion Limitations for Sorption Kinetics on Cryogels in Batch. Gels, 2020, 6, 15.	4.5	11
10	Effect of regioselectivity of chitosan carboxyalkylation and type of cross-linking on the metal-chelate sorption properties toward ciprofloxacin. Reactive and Functional Polymers, 2020, 150, 104536.	4.1	4
11	Synthesis of Nanostructured Sodium Aluminosilicate from Rice Straw and Its Sorption Properties. Inorganic Materials, 2019, 55, 308-314.	0.8	3
12	Chemical modification of polyvinyl chloride with thiourea. Russian Chemical Bulletin, 2019, 68, 1248-1251.	1.5	7
13	Synthesis and sorption properties of porous resorcinol–formaldehyde resins prepared by polymerization of the emulsion dispersion phase. Journal of Materials Science, 2019, 54, 14330-14342.	3.7	4
14	Spark Plasma Sintering of Aluminosilicate Ceramic Matrices for Immobilization of Cesium Radionuclides. Radiochemistry, 2019, 61, 185-191.	0.7	32
15	Manganese Oxide-Based Sorbent for Sr-90 Radionuclide Removal from Seawater. IOP Conference Series: Materials Science and Engineering, 2018, 307, 012030.	0.6	1
16	Polyethyleneimine cryogels for metal ions sorption. Chemical Engineering Journal, 2018, 334, 1392-1398.	12.7	50
17	Study of the Composition, Structure, and Sorption Properties of Nanostructured Aluminosilicates. Theoretical Foundations of Chemical Engineering, 2018, 52, 581-586.	0.7	2
18	Investigation of Sr uptake by birnessite-type sorbents from seawater. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317, 243-251.	1.5	21

Yulya A Azarova

#	Article	IF	CITATIONS
19	Thiocarbamoyl derivatives of polyallylamine for gold and silver recovery from ammonia-thiosulfate leachates. Non-ferrous Metals, 2018, , 12-17.	0.2	4
20	Chitosan-ferrocyanide sorbents for concentrating Cs-137 from seawater. Separation Science and Technology, 2017, 52, 1983-1991.	2.5	14
21	Sorption of 137Cs from seawater onto resorcinol–formaldehyde resin. Radiochemistry, 2017, 59, 160-165.	0.7	5
22	Application of chitosan and its derivatives for solid-phase extraction of metal and metalloid ions: a mini-review. Cellulose, 2016, 23, 2273-2289.	4.9	42
23	Recovery of Au(III), Pt(IV), and Pd(II) Using Pyridylethyl-Containing Polymers: Chitosan Derivatives vs Synthetic Polymers. Industrial & Engineering Chemistry Research, 2016, 55, 10377-10385.	3.7	21
24	Kinetics of the sorption of heavy-metal ions by a sorbent obtained from boric acid production waste. Theoretical Foundations of Chemical Engineering, 2016, 50, 841-845.	0.7	11
25	Imidazolyl derivative of chitosan with high substitution degree: Synthesis, characterization and sorption properties. Carbohydrate Polymers, 2016, 138, 252-258.	10.2	14
26	Effect of polymer backbone chemical structure on metal ions binding by imidazolylmethyl derivatives. Chemical Engineering Journal, 2016, 283, 323-329.	12.7	14
27	Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry. Carbohydrate Polymers, 2015, 134, 680-686.	10.2	24
28	Sr2+ sorption by synthetic and technogenic silicate materials. Inorganic Materials, 2014, 50, 599-605.	0.8	4
29	Preparation of a sorbent for metal ions based on N-(5-methylimidazol-4-ylmethyl) chitosan with medium degree of substitution. Russian Journal of Applied Chemistry, 2014, 87, 82-87.	0.5	12
30	Synthesis and properties of isomeric pyridyl-containing chitosan derivatives. International Journal of Biological Macromolecules, 2013, 62, 426-432.	7.5	22
31	Imidazole-containing chitosan derivative: a new synthetic approach and sorption properties. Russian Chemical Bulletin, 2012, 61, 1959-1964.	1.5	23
32	N-(2-(2-pyridyl)ethyl)chitosan: Synthesis, characterization and sorption properties. Carbohydrate Polymers, 2012, 87, 869-875.	10.2	53
33	N-2-(2-pyridyl)ethyl chitosan: Synthesis in gel and sorption properties. Russian Journal of Applied Chemistry, 2011, 84, 713-718.	0.5	16
34	Thiocarbamoyl chitosan: Synthesis, characterization and sorption of Au(III), Pt(IV), and Pd(II). Carbohydrate Polymers, 2011, 85, 854-861.	10.2	55