
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1141684/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Inhibition of Angiotensin-Converting Enzyme Activity by Flavonoids: Structure-Activity Relationship<br>Studies. PLoS ONE, 2012, 7, e49493.                                                                                                                        | 1.1 | 257       |
| 2  | Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis.<br>International Dairy Journal, 2007, 17, 33-41.                                                                                                                  | 1.5 | 237       |
| 3  | A New Process To Develop a Cocoa Powder with Higher Flavonoid Monomer Content and Enhanced<br>Bioavailability in Healthy Humans. Journal of Agricultural and Food Chemistry, 2007, 55, 3926-3935.                                                                 | 2.4 | 211       |
| 4  | Cocoa fibre and its application as a fat replacer in chocolate muffins. LWT - Food Science and Technology, 2011, 44, 729-736.                                                                                                                                     | 2.5 | 145       |
| 5  | Antihypertensive activity of milk fermented by Enterococcus faecalis strains isolated from raw milk.<br>International Dairy Journal, 2006, 16, 61-69.                                                                                                             | 1.5 | 128       |
| 6  | Hepatoprotective effects of insulin-like growth factor I in rats with carbon tetrachloride-induced cirrhosis. Gastroenterology, 1997, 113, 1682-1691.                                                                                                             | 0.6 | 123       |
| 7  | Proanthocyanidins in health and disease. BioFactors, 2016, 42, 5-12.                                                                                                                                                                                              | 2.6 | 110       |
| 8  | Inhibition of Ulcerative Colitis in Mice after Oral Administration of a Polyphenol-Enriched Cocoa<br>Extract Is Mediated by the Inhibition of STAT1 and STAT3 Phosphorylation in Colon Cells. Journal of<br>Agricultural and Food Chemistry, 2011, 59, 6474-6483. | 2.4 | 106       |
| 9  | Antioxidant properties of polyphenol-rich cocoa products industrially processed. Food Research<br>International, 2010, 43, 1614-1623.                                                                                                                             | 2.9 | 96        |
| 10 | Low-molecular procyanidin rich grape seed extract exerts antihypertensive effect in males spontaneously hypertensive rats. Food Research International, 2013, 51, 587-595.                                                                                        | 2.9 | 89        |
| 11 | Antihypertensive Effect of a Polyphenol-Rich Cocoa Powder Industrially Processed To Preserve the<br>Original Flavonoids of the Cocoa Beans. Journal of Agricultural and Food Chemistry, 2009, 57,<br>6156-6162.                                                   | 2.4 | 88        |
| 12 | Osteopenia in rats with liver cirrhosis: beneficial effects of IGF-I treatment. Journal of Hepatology, 1998, 28, 122-131.                                                                                                                                         | 1.8 | 80        |
| 13 | A grape seed extract increases active glucagon-like peptide-1 levels after an oral glucose load in rats.<br>Food and Function, 2014, 5, 2357.                                                                                                                     | 2.1 | 69        |
| 14 | Proanthocyanidins potentiate hypothalamic leptin/STAT3 signalling and Pomc gene expression in rats with diet-induced obesity. International Journal of Obesity, 2017, 41, 129-136.                                                                                | 1.6 | 60        |
| 15 | Low doses of insulin-like growth factor-I improve nitrogen retention and food efficiency in rats with early cirrhosis. Journal of Hepatology, 1997, 26, 191-202.                                                                                                  | 1.8 | 53        |
| 16 | Highly Methoxylated Pectin Improves Insulin Resistance and Other Cardiometabolic Risk Factors in<br>Zucker Fatty Rats. Journal of Agricultural and Food Chemistry, 2008, 56, 3574-3581.                                                                           | 2.4 | 48        |
| 17 | Serum metabolites of proanthocyanidin-administered rats decrease lipid synthesis in HepC2 cells.<br>Journal of Nutritional Biochemistry, 2013, 24, 2092-2099.                                                                                                     | 1.9 | 48        |
| 18 | Effect of low molecular grape seed proanthocyanidins on blood pressure and lipid homeostasis in cafeteria diet-fed rats. Journal of Physiology and Biochemistry, 2014, 70, 629-637.                                                                               | 1.3 | 48        |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Antifibrogenic effect in vivo of low doses of insulin-like growth factor-l in cirrhotic rats. Biochimica<br>Et Biophysica Acta - Molecular Basis of Disease, 2001, 1536, 185-195.                                                                                | 1.8 | 47        |
| 20 | Breadmaking Performance and Keeping Behavior of Cocoa-soluble Fiber-enriched Wheat Breads. Food<br>Science and Technology International, 2009, 15, 79-87.                                                                                                        | 1.1 | 46        |
| 21 | Genderâ€related similarities and differences in the body distribution of grape seed flavanols in rats.<br>Molecular Nutrition and Food Research, 2016, 60, 760-772.                                                                                              | 1.5 | 46        |
| 22 | Plasma kinetics and microbial biotransformation of grape seed flavanols in rats. Journal of Functional Foods, 2015, 12, 478-488.                                                                                                                                 | 1.6 | 45        |
| 23 | Optimization of a polyphenol extraction method for sweet orange pulp (Citrus sinensis L.) to identify phenolic compounds consumed from sweet oranges. PLoS ONE, 2019, 14, e0211267.                                                                              | 1.1 | 45        |
| 24 | Soluble fiber-enriched diets improve inflammation and oxidative stress biomarkers in Zucker fatty rats. Pharmacological Research, 2011, 64, 31-35.                                                                                                               | 3.1 | 44        |
| 25 | Hypolipidemic Effect in Cholesterol-Fed Rats of a Soluble Fiber-Rich Product Obtained from Cocoa<br>Husks. Journal of Agricultural and Food Chemistry, 2008, 56, 6985-6993.                                                                                      | 2.4 | 43        |
| 26 | Tissue distribution of rat flavanol metabolites at different doses. Journal of Nutritional<br>Biochemistry, 2015, 26, 987-995.                                                                                                                                   | 1.9 | 43        |
| 27 | Phenolic compounds and biological rhythms: Who takes the lead?. Trends in Food Science and Technology, 2021, 113, 77-85.                                                                                                                                         | 7.8 | 43        |
| 28 | Chronic administration of grape-seed polyphenols attenuates the development of hypertension and improves other cardiometabolic risk factors associated with the metabolic syndrome in cafeteria diet-fed rats. British Journal of Nutrition, 2017, 117, 200-208. | 1.2 | 39        |
| 29 | Chrononutrition and Polyphenols: Roles and Diseases. Nutrients, 2019, 11, 2602.                                                                                                                                                                                  | 1.7 | 39        |
| 30 | Acute administration of single oral dose of grape seed polyphenols restores blood pressure in a rat model of metabolic syndrome: role of nitric oxide and prostacyclin. European Journal of Nutrition, 2016, 55, 749-758.                                        | 1.8 | 37        |
| 31 | Changes in arterial blood pressure in hypertensive rats caused by long-term intake of milk fermented by Enterococcus faecalis CECT 5728. British Journal of Nutrition, 2005, 94, 36-43.                                                                          | 1.2 | 35        |
| 32 | Involvement of nitric oxide and prostacyclin in the antihypertensive effect of low-molecular-weight<br>procyanidin rich grape seed extract in male spontaneously hypertensive rats. Journal of Functional<br>Foods, 2014, 6, 419-427.                            | 1.6 | 34        |
| 33 | A comparative study on the bioavailability of phenolic compounds from organic and nonorganic red grapes. Food Chemistry, 2019, 299, 125092.                                                                                                                      | 4.2 | 33        |
| 34 | Microbial inactivation and butter extraction in a cocoa derivative using high pressure CO2. Journal of Supercritical Fluids, 2007, 42, 80-87.                                                                                                                    | 1.6 | 32        |
| 35 | Effect of a Soluble Cocoa Fiber-Enriched Diet in Zucker Fatty Rats. Journal of Medicinal Food, 2010, 13, 621-628.                                                                                                                                                | 0.8 | 31        |
| 36 | Effect of a cocoa polyphenol extract in spontaneously hypertensive rats. Food and Function, 2011, 2, 649.                                                                                                                                                        | 2.1 | 31        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Potential Involvement of Peripheral Leptin/STAT3 Signaling in the Effects of Resveratrol and Its<br>Metabolites on Reducing Body Fat Accumulation. Nutrients, 2018, 10, 1757.                                                              | 1.7 | 31        |
| 38 | Changes in Arterial Blood Pressure of a Soluble Cocoa Fiber Product in Spontaneously Hypertensive Rats. Journal of Agricultural and Food Chemistry, 2010, 58, 1493-1501.                                                                   | 2.4 | 27        |
| 39 | Use of dietary phytochemicals for inhibition of trimethylamine N-oxide formation. Journal of<br>Nutritional Biochemistry, 2021, 91, 108600.                                                                                                | 1.9 | 26        |
| 40 | Synergistic Effect of High Hydrostatic Pressure and Natural Antimicrobials on Inactivation Kinetics<br>of <i>Bacillus cereus</i> in a Liquid Whole Egg and Skim Milk Mixed Beverage. Foodborne Pathogens<br>and Disease, 2009, 6, 649-656. | 0.8 | 25        |
| 41 | Long-term intake of CocoanOX attenuates the development of hypertension in spontaneously hypertensive rats. Food Chemistry, 2010, 122, 1013-1019.                                                                                          | 4.2 | 24        |
| 42 | Evidence that nitric oxide mediates the blood pressure lowering effect of a polyphenol-rich cocoa powder in spontaneously hypertensive rats. Pharmacological Research, 2011, 64, 478-481.                                                  | 3.1 | 24        |
| 43 | A Rapid Method to Determine Colonic Microbial Metabolites Derived from Grape Flavanols in Rat<br>Plasma by Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food<br>Chemistry, 2014, 62, 7698-7706.             | 2.4 | 24        |
| 44 | Antihyperglycemic effect of a chicken feet hydrolysate <i>via</i> the incretin system: DPP-IV-inhibitory activity and GLP-1 release stimulation. Food and Function, 2019, 10, 4062-4070.                                                   | 2.1 | 24        |
| 45 | A dose–response study of the bioavailability of grape seed proanthocyanidin in rat and lipid-lowering effects of generated metabolites in HepG2 cells. Food Research International, 2014, 64, 500-507.                                     | 2.9 | 23        |
| 46 | Regulation of vascular endothelial genes by dietary flavonoids: structure-expression relationship<br>studies and the role of the transcription factor KLF-2. Journal of Nutritional Biochemistry, 2015, 26,<br>277-284.                    | 1.9 | 23        |
| 47 | Lack of Tissue Accumulation of Grape Seed Flavanols after Daily Long-Term Administration in Healthy and Cafeteria-Diet Obese Rats. Journal of Agricultural and Food Chemistry, 2015, 63, 9996-10003.                                       | 2.4 | 23        |
| 48 | Dose-Related Antihypertensive Properties and the Corresponding Mechanisms of a Chicken Foot<br>Hydrolysate in Hypertensive Rats. Nutrients, 2018, 10, 1295.                                                                                | 1.7 | 23        |
| 49 | Long-term administration of protein hydrolysate from chicken feet induces antihypertensive effect<br>and confers vasoprotective pattern in diet-induced hypertensive rats. Journal of Functional Foods,<br>2019, 55, 28-35.                | 1.6 | 23        |
| 50 | Optimized Extraction by Response Surface Methodology Used for the Characterization and<br>Quantification of Phenolic Compounds in Whole Red Grapes (Vitis vinifera). Nutrients, 2018, 10, 1931.                                            | 1.7 | 22        |
| 51 | Novel Antihypertensive Peptides Derived from Chicken Foot Proteins. Molecular Nutrition and Food Research, 2019, 63, e1801176.                                                                                                             | 1.5 | 22        |
| 52 | Effect of Olive Powder on the Growth and Inhibition ofBacillus cereus. Foodborne Pathogens and Disease, 2009, 6, 33-37.                                                                                                                    | 0.8 | 21        |
| 53 | Mechanisms for antihypertensive effect of CocoanOX, a polyphenol-rich cocoa powder, in spontaneously hypertensive rats. Food Research International, 2011, 44, 1203-1208.                                                                  | 2.9 | 21        |
| 54 | The blood pressure effect and related plasma levels of flavan-3-ols in spontaneously hypertensive rats. Food and Function, 2015, 6, 3479-3489.                                                                                             | 2.1 | 21        |

4

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Age related differences in the plasma kinetics of flavanols in rats. Journal of Nutritional<br>Biochemistry, 2016, 29, 90-96.                                                            | 1.9 | 21        |
| 56 | Flavanol plasma bioavailability is affected by metabolic syndrome in rats. Food Chemistry, 2017, 231, 287-294.                                                                           | 4.2 | 21        |
| 57 | Grape seed flavanols decrease blood pressure via Sirt-1 and confer a vasoprotective pattern in rats.<br>Journal of Functional Foods, 2016, 24, 164-172.                                  | 1.6 | 20        |
| 58 | Virgin olive oil (unfiltered) extract contains peptides and possesses ACE inhibitory and antihypertensive activity. Clinical Nutrition, 2020, 39, 1242-1249.                             | 2.3 | 20        |
| 59 | Identification of novel antihypertensive peptides from wine lees hydrolysate. Food Chemistry, 2022, 366, 130690.                                                                         | 4.2 | 20        |
| 60 | Determination of the Antihypertensive Peptide LHLPLP in Fermented Milk by High-Performance Liquid<br>Chromatography–Mass Spectrometry. Journal of Dairy Science, 2006, 89, 4527-4535.    | 1.4 | 18        |
| 61 | Effects of IGF-I treatment on osteopenia in rats with advanced liver cirrhosis. Journal of Physiology and Biochemistry, 2000, 56, 91-99.                                                 | 1.3 | 17        |
| 62 | Effect of Olive Powder and High Hydrostatic Pressure on the Inactivation of <i>Bacillus<br/>cereus</i> Spores in a Reference Medium. Foodborne Pathogens and Disease, 2011, 8, 681-685.  | 0.8 | 17        |
| 63 | Optimization of extraction methods for characterization of phenolic compounds in apricot fruit ( <i>Prunus armeniaca</i> ). Food and Function, 2019, 10, 6492-6502.                      | 2.1 | 17        |
| 64 | Effect of an antioxidant functional food beverage on exercise-induced oxidative stress: A long-term and large-scale clinical intervention study. Toxicology, 2010, 278, 101-111.         | 2.0 | 16        |
| 65 | Optimization and characterization of Royal Dawn cherry (Prunus avium) phenolics extraction.<br>Scientific Reports, 2019, 9, 17626.                                                       | 1.6 | 16        |
| 66 | ACE Inhibitory and Antihypertensive Activities of Wine Lees and Relationship among Bioactivity and Phenolic Profile. Nutrients, 2021, 13, 679.                                           | 1.7 | 16        |
| 67 | Enzyme-Assisted Extraction to Obtain Phenolic-Enriched Wine Lees with Enhanced Bioactivity in Hypertensive Rats. Antioxidants, 2021, 10, 517.                                            | 2.2 | 16        |
| 68 | Changes in arterial blood pressure caused by long-term administration of grape seed proanthocyanidins in rats with established hypertension. Food and Function, 2020, 11, 8735-8742.     | 2.1 | 15        |
| 69 | Development of a High-Throughput Method to Study the Inhibitory Effect of Phytochemicals on Trimethylamine Formation. Nutrients, 2021, 13, 1466.                                         | 1.7 | 15        |
| 70 | Impact of gut microbiota on plasma oxylipins profile under healthy and obesogenic conditions.<br>Clinical Nutrition, 2021, 40, 1475-1486.                                                | 2.3 | 15        |
| 71 | Exposure of Fischer 344 rats to distinct photoperiods influences the bioavailability of red grape polyphenols. Journal of Photochemistry and Photobiology B: Biology, 2019, 199, 111623. | 1.7 | 14        |
| 72 | Gut Seasons: Photoperiod Effects on Fecal Microbiota in Healthy and Cafeteria-Induced Obese Fisher<br>344 Rats. Nutrients, 2022, 14, 722.                                                | 1.7 | 14        |

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Rat health status affects bioavailability, target tissue levels, and bioactivity of grape seed flavanols.<br>Molecular Nutrition and Food Research, 2017, 61, 1600342.                                                                                                       | 1.5 | 13        |
| 74 | Systematic bioinformatic analysis of nutrigenomic data of flavanols in cell models of cardiometabolic disease. Food and Function, 2020, 11, 5040-5064.                                                                                                                       | 2.1 | 13        |
| 75 | Evidence that Nitric Oxide is Involved in the Blood Pressure Lowering Effect of the Peptide AVFQHNCQE in Spontaneously Hypertensive Rats. Nutrients, 2019, 11, 225.                                                                                                          | 1.7 | 13        |
| 76 | Cardioprotective Properties of Phenolic Compounds: A Role for Biological Rhythms. Molecular<br>Nutrition and Food Research, 2022, 66, e2100990.                                                                                                                              | 1.5 | 13        |
| 77 | The Disruption of Liver Metabolic Circadian Rhythms by a Cafeteria Diet Is Sex-Dependent in Fischer 344<br>Rats. Nutrients, 2020, 12, 1085.                                                                                                                                  | 1.7 | 12        |
| 78 | Time-of-Day Circadian Modulation of Grape-Seed Procyanidin Extract (GSPE) in Hepatic Mitochondrial<br>Dynamics in Cafeteria-Diet-Induced Obese Rats. Nutrients, 2022, 14, 774.                                                                                               | 1.7 | 12        |
| 79 | Diet-induced obesity in genetically diverse collaborative cross mouse founder strains reveals diverse phenotype response and amelioration by quercetin treatment in 129S1/SvImJ, PWK/EiJ, CAST/PhJ, and WSB/EiJ mice. Journal of Nutritional Biochemistry, 2021, 87, 108521. | 1.9 | 11        |
| 80 | Blood Pressure-Lowering Effect of Wine Lees Phenolic Compounds Is Mediated by Endothelial-Derived<br>Factors: Role of Sirtuin 1. Antioxidants, 2021, 10, 1073.                                                                                                               | 2.2 | 11        |
| 81 | Resveratrol Treatment Enhances the Cellular Response to Leptin by Increasing OBRb Content in<br>Palmitate-Induced Steatotic HepG2 Cells. International Journal of Molecular Sciences, 2019, 20, 6282.                                                                        | 1.8 | 10        |
| 82 | Beneficial Effects of a Low-dose of Conjugated Linoleic Acid on Body Weight Gain and other<br>Cardiometabolic Risk Factors in Cafeteria Diet-fed Rats. Nutrients, 2020, 12, 408.                                                                                             | 1.7 | 10        |
| 83 | Administration Time Significantly Affects Plasma Bioavailability of Grape Seed Proanthocyanidins<br>Extract in Healthy and Obese Fischer 344 Rats. Molecular Nutrition and Food Research, 2022, 66,<br>e2100552.                                                             | 1.5 | 10        |
| 84 | Exosomes transport trace amounts of (poly)phenols. Food and Function, 2020, 11, 7784-7792.                                                                                                                                                                                   | 2.1 | 9         |
| 85 | Tomatoes consumed in-season prevent oxidative stress in Fischer 344 rats: impact of geographical origin. Food and Function, 2021, 12, 8340-8350.                                                                                                                             | 2.1 | 9         |
| 86 | Potential of Phenolic Compounds and Their Gut Microbiota-Derived Metabolites to Reduce TMA<br>Formation: Application of an <i>In Vitro</i> Fermentation High-Throughput Screening Model. Journal<br>of Agricultural and Food Chemistry, 2022, 70, 3207-3218.                 | 2.4 | 8         |
| 87 | Grape Seed Proanthocyanidins Mitigate the Disturbances Caused by an Abrupt Photoperiod Change in<br>Healthy and Obese Rats. Nutrients, 2022, 14, 1834.                                                                                                                       | 1.7 | 8         |
| 88 | Role of Chrononutrition in the Antihypertensive Effects of Natural Bioactive Compounds. Nutrients, 2022, 14, 1920.                                                                                                                                                           | 1.7 | 8         |
| 89 | Implication of Opioid Receptors in the Antihypertensive Effect of a Novel Chicken Foot-Derived Peptide.<br>Biomolecules, 2020, 10, 992.                                                                                                                                      | 1.8 | 7         |
| 90 | Blood Pressure-Lowering Effect of Wine Lees: Dose-Response Study, Effect of Dealcoholization and<br>Possible Mechanisms of Action. Nutrients, 2021, 13, 1142.                                                                                                                | 1.7 | 7         |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Winery by-products as a valuable source for natural antihypertensive agents. Critical Reviews in Food Science and Nutrition, 2023, 63, 7708-7721.                                                        | 5.4 | 6         |
| 92  | Endothelium-dependent vascular relaxing effects of different citrus and olive extracts in aorta rings from spontaneously hypertensive rats. Food Research International, 2015, 77, 484-490.              | 2.9 | 5         |
| 93  | Seasonal Consumption of Cherries from Different Origins Affects Metabolic Markers and Gene<br>Expression of Lipogenic Enzymes in Rat Liver: A Preliminary Study. Nutrients, 2021, 13, 3643.              | 1.7 | 4         |
| 94  | Phenolic-rich beverages reduce bacterial TMA formation in an <i>ex vivo</i> – <i>in vitro</i> colonic fermentation model. Food and Function, 2022, 13, 8022-8037.                                        | 2.1 | 4         |
| 95  | A novel dietary multifunctional ingredient reduces body weight and improves leptin sensitivity in cafeteria diet-fed rats. Journal of Functional Foods, 2020, 73, 104141.                                | 1.6 | 3         |
| 96  | A multifunctional ingredient for the management of metabolic syndrome in cafeteria diet-fed rats.<br>Food and Function, 2021, 12, 815-824.                                                               | 2.1 | 3         |
| 97  | Utilizing preclinical models of genetic diversity to improve translation of phytochemical activities from rodents to humans and inform personalized nutrition. Food and Function, 2021, 12, 11077-11105. | 2.1 | 3         |
| 98  | Proanthocyanidins and Epigenetics. , 2019, , 1933-1956.                                                                                                                                                  |     | 2         |
| 99  | Antioxidantes, atividade fÃsica e estresse oxidativo em mulheres idosas. Revista Brasileira De Medicina<br>Do Esporte, 2008, 14, 8-11.                                                                   | 0.1 | 2         |
| 100 | Proanthocyanidins and Epigenetics. , 2017, , 1-24.                                                                                                                                                       |     | 1         |
| 101 | Efecto producido por la ingesta crónica de leche fermentada por Enterococcus faecalis CECT 5728 en<br>ratas hipertensas. Hipertension, 2006, 23, 166-172.                                                | 0.0 | 0         |
| 102 | Effect of thyroxine on the rate of collagen breakdown in young thyroidectomized male rats. Revista<br>Española De FisiologÃa, 1994, 50, 127-8.                                                           | 0.0 | 0         |
| 103 | Eat Fruits In-Season to Give Rhythm to Your Life. Frontiers for Young Minds, 0, 10, .                                                                                                                    | 0.8 | 0         |