Jason D Shepherd

List of Publications by Citations

Source: https://exaly.com/author-pdf/1141671/jason-d-shepherd-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

34 6,730 21 43 g-index

43 7,744 15.1 5.61 L-index

#	Paper	IF	Citations
34	Triple-transgenic model of Alzheimers disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. <i>Neuron</i> , 2003 , 39, 409-21	13.9	3031
33	The cell biology of synaptic plasticity: AMPA receptor trafficking. <i>Annual Review of Cell and Developmental Biology</i> , 2007 , 23, 613-43	12.6	755
32	Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. <i>Neuron</i> , 2006 , 52, 445-59	13.9	576
31	Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. <i>Neuron</i> , 2006 , 52, 475-84	13.9	570
30	Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. <i>Neuron</i> , 2008 , 59, 70-83	13.9	414
29	New views of Arc, a master regulator of synaptic plasticity. <i>Nature Neuroscience</i> , 2011 , 14, 279-84	25.5	340
28	The Neuronal Gene Arc Encodes a Repurposed Retrotransposon Gag Protein that Mediates Intercellular RNA Transfer. <i>Cell</i> , 2018 , 172, 275-288.e18	56.2	203
27	Arc/Arg3.1 regulates an endosomal pathway essential for activity-dependent ﷺ Emyloid generation. <i>Cell</i> , 2011 , 147, 615-28	56.2	144
26	Loss of Arc renders the visual cortex impervious to the effects of sensory experience or deprivation. <i>Nature Neuroscience</i> , 2010 , 13, 450-7	25.5	126
25	Imaging activity in neurons and glia with a Polr2a-based and cre-dependent GCaMP5G-IRES-tdTomato reporter mouse. <i>Neuron</i> , 2014 , 83, 1058-72	13.9	77
24	SRF binding to SRE 6.9 in the Arc promoter is essential for LTD in cultured Purkinje cells. <i>Nature Neuroscience</i> , 2010 , 13, 1082-9	25.5	59
23	The role of ionotropic glutamate receptors in childhood neurodevelopmental disorders: autism spectrum disorders and fragile x syndrome. <i>Current Neuropharmacology</i> , 2014 , 12, 71-98	7.6	50
22	The Temporal Dynamics of Arc Expression Regulate Cognitive Flexibility. <i>Neuron</i> , 2018 , 98, 1124-1132.e	7 13.9	40
21	Three-dimensional genome restructuring across timescales of activity-induced neuronal gene expression. <i>Nature Neuroscience</i> , 2020 , 23, 707-717	25.5	33
20	Activity-Dependent Arc Expression and Homeostatic Synaptic Plasticity Are Altered in Neurons from a Mouse Model of Angelman Syndrome. <i>Frontiers in Molecular Neuroscience</i> , 2017 , 10, 234	6.1	32
19	Memory, plasticity and sleep - A role for calcium permeable AMPA receptors?. <i>Frontiers in Molecular Neuroscience</i> , 2012 , 5, 49	6.1	32
18	Arc restores juvenile plasticity in adult mouse visual cortex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 9182-9187	11.5	30

LIST OF PUBLICATIONS

17	The microbiota protects from viral-induced neurologic damage through microglia-intrinsic TLR signaling. <i>ELife</i> , 2019 , 8,	8.9	28
16	Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy. <i>Scientific Reports</i> , 2017 , 7, 44791	4.9	24
15	Structures of virus-like capsids formed by the Drosophila neuronal Arc proteins. <i>Nature Neuroscience</i> , 2020 , 23, 172-175	25.5	22
14	Interneuron Simplification and Loss of Structural Plasticity As Markers of Aging-Related Functional Decline. <i>Journal of Neuroscience</i> , 2018 , 38, 8421-8432	6.6	16
13	Arc - An endogenous neuronal retrovirus?. Seminars in Cell and Developmental Biology, 2018, 77, 73-78	7.5	13
12	Experience-Dependent Development and Maintenance of Binocular Neurons in the Mouse Visual Cortex. <i>Cell Reports</i> , 2020 , 30, 1982-1994.e4	10.6	12
11	Arc: building a bridge from viruses to memory. <i>Biochemical Journal</i> , 2015 , 469, e1-3	3.8	7
10	Intercellular Communication in the Nervous System Goes Viral. <i>Trends in Neurosciences</i> , 2021 , 44, 248-2	5 2 3.3	6
9	The Immediate Early Gene Arc Is Not Required for Hippocampal Long-Term Potentiation. <i>Journal of Neuroscience</i> , 2021 , 41, 4202-4211	6.6	5
8	Computational cannula microscopy of neurons using neural networks. <i>Optics Letters</i> , 2020 , 45, 2111-21	1 4	4
7	3D computational cannula fluorescence microscopy enabled by artificial neural networks. <i>Optics Express</i> , 2020 , 28, 32342-32348	3.3	3
6	Author response: The microbiota protects from viral-induced neurologic damage through microglia-intrinsic TLR signaling 2019 ,		3
5	Expanding the AtLAS of non-coding RNA functions in the brain. <i>Cell Research</i> , 2020 , 30, 283-284	24.7	2
4	Scan-less machine-learning-enabled incoherent microscopy for minimally-invasive deep-brain imaging <i>Optics Express</i> , 2022 , 30, 1546-1554	3.3	2
3	Intercellular Arc Signaling Regulates Vasodilation. <i>Journal of Neuroscience</i> , 2021 , 41, 7712-7726	6.6	2
2	Deconstructing the synapse. <i>Nature Neuroscience</i> , 2018 , 21, 1294-1295	25.5	2
1	The immediate early gene Arc is not required for hippocampal long-term potentiation		1