Ram Krishnamurthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/114162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical Etiology of Nucleic Acid Structure: The alpha -Threofuranosyl-(3'rightarrow 2') Oligonucleotide System. Science, 2000, 290, 1347-1351.	6.0	523
2	Esterâ€Mediated Amide Bond Formation Driven by Wet–Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth. Angewandte Chemie - International Edition, 2015, 54, 9871-9875.	7.2	246
3	Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nature Chemistry, 2018, 10, 212-217.	6.6	177
4	The Origin of RNA and "My Grandfather's Axe― Chemistry and Biology, 2013, 20, 466-474.	6.2	172
5	Chemistry of Abiotic Nucleotide Synthesis. Chemical Reviews, 2020, 120, 4766-4805.	23.0	123
6	Pyranosyl-RNA (â€~p-RNA'): Base-pairing selectivity and potential to replicate. Preliminary communication. Helvetica Chimica Acta, 1995, 78, 1621-1635.	1.0	116
7	Chemical Etiology of Nucleic Acid Structure: Comparing Pentopyranosyl-(2'→4') Oligonucleotides with RNA. Science, 1999, 283, 699-703.	6.0	113
8	Spontaneous formation and base pairing of plausible prebiotic nucleotides in water. Nature Communications, 2016, 7, 11328.	5.8	112
9	Role of p <i>K</i> _a of Nucleobases in the Origins of Chemical Evolution. Accounts of Chemical Research, 2012, 45, 2035-2044.	7.6	100
10	Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligodipeptides and Oligodipeptoids Tagged with Triazines as Recognition Elements. Angewandte Chemie - International Edition, 2007, 46, 2470-2477.	7.2	90
11	The -L-Threofuranosyl-(3′→2′)-oligonucleotide System (†TNA'): Synthesis and Pairing Properties. Helvetica Chimica Acta, 2002, 85, 4111-4153.	¹ 1.0	89
12	Linked cycles of oxidative decarboxylation of glyoxylate as protometabolic analogs of the citric acid cycle. Nature Communications, 2018, 9, 91.	5.8	89
13	Investigation of a model for 1,2-asymmetric induction in reactions of .alphacarbalkoxy radicals: a stereochemical comparison of reactions of .alphacarbalkoxy radicals and ester enolates. Journal of Organic Chemistry, 1992, 57, 4457-4470.	1.7	87
14	Free-radical cyclizations: application to the total synthesis of dl-pleurotin and dl-dihydropleurotin acid. Journal of the American Chemical Society, 1989, 111, 7507-7519.	6.6	82
15	Spontaneous Prebiotic Formation of a \hat{l}^2 -Ribofuranoside That Self-Assembles with a Complementary Heterocycle. Journal of the American Chemical Society, 2014, 136, 5640-5646.	6.6	82
16	A Plausible Simultaneous Synthesis of Amino Acids and Simple Peptides on the Primordial Earth. Angewandte Chemie - International Edition, 2014, 53, 8132-8136.	7.2	82
17	Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16338-16346.	3.3	81
18	Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligodipeptides Tagged with 2,4-Disubstituted 5-Aminopyrimidines as Recognition Elements. Angewandte Chemie - International Edition, 2007, 46, 2478-2484.	7.2	80

#	Article	IF	CITATIONS
19	Regioselectiveα-Phosphorylation of Aldoses in Aqueous Solution. Angewandte Chemie - International Edition, 2000, 39, 2281-2285.	7.2	78
20	A plausible metal-free ancestral analogue of the Krebs cycle composed entirely of α-ketoacids. Nature Chemistry, 2020, 12, 1016-1022.	6.6	72
21	The role of sugar-backbone heterogeneity and chimeras in the simultaneous emergence of RNA and DNA. Nature Chemistry, 2019, 11, 1009-1018.	6.6	71
22	A Unified Mechanism for Abiotic Adenine and Purine Synthesis in Formamide. Angewandte Chemie - International Edition, 2012, 51, 5134-5137.	7.2	68
23	Formation of glycolaldehyde phosphate from glycolaldehyde in aqueous solution. Origins of Life and Evolution of Biospheres, 1999, 29, 333-354.	0.8	67
24	New codons for efficient production of unnatural proteins in a semisynthetic organism. Nature Chemical Biology, 2020, 16, 570-576.	3.9	67
25	Crystal Structure of a B-Form DNA Duplex Containing (I)-α-Threofuranosyl (3â€~→2â€~) Nucleosides: A Four-Carbon Sugar Is Easily Accommodated into the Backbone of DNA. Journal of the American Chemical Society, 2002, 124, 13716-13721.	6.6	63
26	2,6-Diaminopurine in TNA:  Effect on Duplex Stabilities and on the Efficiency of Template-Controlled Ligations1. Organic Letters, 2002, 4, 1283-1286.	2.4	63
27	Why Does TNA Cross-Pair More Strongly with RNA Than with DNA? An Answer From X-ray Analysis. Angewandte Chemie - International Edition, 2003, 42, 5893-5895.	7.2	63
28	The Structure of a TNAâ^'TNA Complex in Solution: NMR Study of the Octamer Duplex Derived from α-(<scp> </scp>)-Threofuranosyl-(3′-2′)-CGAATTCG. Journal of the American Chemical Society, 2008, 130, 15105-15115.	6.6	61
29	Exploratory Experiments on the Chemistry of the "Glyoxylate Scenario†Formation of Ketosugars from Dihydroxyfumarate. Journal of the American Chemical Society, 2012, 134, 3577-3589.	6.6	61
30	Prebiotic phosphorylation of 2-thiouridine provides either nucleotides or DNA building blocks via photoreduction. Nature Chemistry, 2019, 11, 457-462.	6.6	61
31	Mutually stabilizing interactions between proto-peptides and RNA. Nature Communications, 2020, 11, 3137.	5.8	61
32	On the Emergence of RNA. Israel Journal of Chemistry, 2015, 55, 837-850.	1.0	59
33	Pyranosyl-RNA: Base Pairing between Homochiral Oligonucleotide Strands of Opposite Sense of Chirality. Angewandte Chemie International Edition in English, 1996, 35, 1537-1541.	4.4	57
34	Giving Rise to Life: Transition from Prebiotic Chemistry to Protobiology. Accounts of Chemical Research, 2017, 50, 455-459.	7.6	53
35	Optimization of Replication, Transcription, and Translation in a Semi-Synthetic Organism. Journal of the American Chemical Society, 2019, 141, 10644-10653.	6.6	52
36	Surveying the sequence diversity of model prebiotic peptides by mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7652-E7659.	3.3	51

#	Article	IF	CITATIONS
37	Pentopyranosyl Oligonucleotide Systems. 9th Communication. Helvetica Chimica Acta, 2003, 86, 4270-4363.	1.0	50
38	Mineral induced formation of pentose-2,4-bisphosphates. Origins of Life and Evolution of Biospheres, 1999, 29, 139-152.	0.8	49
39	Life's Biological Chemistry: A Destiny or Destination Starting from Prebiotic Chemistry?. Chemistry - A European Journal, 2018, 24, 16708-16715.	1.7	46
40	Geochemical Sources and Availability of Amidophosphates on the Early Earth. Angewandte Chemie - International Edition, 2019, 58, 8151-8155.	7.2	44
41	RNA–DNA Chimeras in the Context of an RNA World Transition to an RNA/DNA World. Angewandte Chemie - International Edition, 2016, 55, 13204-13209.	7.2	43
42	Nitrogenous Derivatives of Phosphorus and the Origins of Life: Plausible Prebiotic Phosphorylating Agents in Water. Life, 2017, 7, 32.	1.1	43
43	Baseâ€Pairing Properties of a Structural Isomer of Glycerol Nucleic Acid. Angewandte Chemie - International Edition, 2013, 52, 5840-5844.	7.2	40
44	Production of Tartrates by Cyanide-Mediated Dimerization of Glyoxylate: A Potential Abiotic Pathway to the Citric Acid Cycle. Journal of the American Chemical Society, 2013, 135, 13440-13445.	6.6	39
45	Base-Pairing Systems Related to TNA:  α-Threofuranosyl Oligonucleotides Containing Phosphoramidate Linkages1. Organic Letters, 2002, 4, 1279-1282.	2.4	38
46	Pentopyranosyl oligonucleotide systems. Part 11: systems with shortened backbones: (?)-β-ribopyranosyl-(4′→3′)- and (?)-α-lyxopyranosyl-(4′→3′)-oligonucleotides. Bioorganic and Medi Chemistry, 2001, 9, 2411-2428.	cinał	34
47	Cyclophospholipids Increase Protocellular Stability to Metal Ions. Small, 2020, 16, e1903381.	5.2	32
48	Glycosylation of a model proto-RNA nucleobase with non-ribose sugars: implications for the prebiotic synthesis of nucleosides. Organic and Biomolecular Chemistry, 2018, 16, 1263-1271.	1.5	29
49	Kinetics of prebiotic depsipeptide formation from the ester–amide exchange reaction. Physical Chemistry Chemical Physics, 2016, 18, 28441-28450.	1.3	28
50	Stereoselective Free Radical Reactions at C(20) of Steroid Side Chains. Synlett, 1991, 1991, 412-414.	1.0	27
51	Elongation of Model Prebiotic Proto-Peptides by Continuous Monomer Feeding. Macromolecules, 2017, 50, 9286-9294.	2.2	27
52	Synthesis of 6H-dibenzo[b,d]pyran-6-ones via dienone-phenol rearrangements of spiro[2,5-cyclohexadiene-1,1′(3′H)-isobenzofuran]-3′-ones. Tetrahedron, 1992, 48, 8179-8188.	1.0	26
53	Bis(tri-n-butylstannyl)benzopinacolate: Preparation and use as a mediator of intermolecular free radical reactions. Tetrahedron Letters, 1993, 34, 7819-7822.	0.7	24
54	Promiscuous Watsonâ^'Crick Cross-Pairing within the Family of Pentopyranosyl (4â€~→2â€~) Oligonucleotides1. Organic Letters, 1999, 1, 1527-1530.	2.4	24

#	Article	IF	CITATIONS
55	Geochemical Sources and Availability of Amidophosphates on the Early Earth. Angewandte Chemie, 2019, 131, 8235-8239.	1.6	23
56	Introduction: Chemical Evolution and the Origins of Life. Chemical Reviews, 2020, 120, 4613-4615.	23.0	23
57	l-α-Lyxopyranosyl (4â€~→3â€~) Oligonucleotides:  A Base-Pairing System Containing a Shortened Backbone] Organic Letters, 1999, 1, 1531-1534.		22
58	Rapid resolution of carbohydrate isomers <i>via</i> multi-site derivatization ion mobility-mass spectrometry. Analyst, The, 2018, 143, 949-955.	1.7	22
59	2,6-Diamino-5,8-diaza-7,9-dicarba-purine1. Organic Letters, 2003, 5, 2067-2070.	2.4	21
60	Carbohydrate isomer resolution <i>via</i> multi-site derivatization cyclic ion mobility-mass spectrometry. Analyst, The, 2019, 144, 7220-7226.	1.7	21
61	Cyanide as a primordial reductant enables a protometabolic reductive glyoxylate pathway. Nature Chemistry, 2022, 14, 170-178.	6.6	21
62	Concentration of Simple Aldehydes by Sulfite-Containing Double-Layer Hydroxide Minerals: Implications for Biopoesis. Helvetica Chimica Acta, 2000, 83, 2398-2411.	1.0	20
63	Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligoâ€dipeptides Tagged with Orotic Acid Derivatives as Recognition Elements. Angewandte Chemie - International Edition, 2009, 48, 8124-8128.	7.2	20
64	Pentopyranosyl Oligonucleotide Systems. Communication No.â€13. Helvetica Chimica Acta, 2003, 86, 1259-1308.	1.0	19
65	Nanopore Sequencing of an Expanded Genetic Alphabet Reveals High-Fidelity Replication of a Predominantly Hydrophobic Unnatural Base Pair. Journal of the American Chemical Society, 2020, 142, 2110-2114.	6.6	19
66	Experimentally investigating the origin of DNA/RNA on early Earth. Nature Communications, 2018, 9, 5175.	5.8	16
67	Transcriptional processing of an unnatural base pair by eukaryotic RNA polymerase II. Nature Chemical Biology, 2021, 17, 906-914.	3.9	16
68	Pentopyranosyl Oligonucleotide Systems, Communication No. 10, Theα-L-Lyxopyranosyl-(4′→2′)-oligonucleotide System. Helvetica Chimica Acta, 2001, 84, 1778-1804.	1.0	15
69	Pentopyranosyl Oligonucleotide Systems, Communication No.12,		

#	Article	IF	CITATIONS
73	Noncovalent Helicene Structure between Nucleic Acids and Cyanuric Acid. Chemistry - A European Journal, 2021, 27, 4043-4052.	1.7	14
74	Chemical etiology of nucleic acid structure. Pure and Applied Chemistry, 2000, 72, 343-345.	0.9	13
75	NMR Solution Structure of the Duplex Formed by Self-Pairing of -L-Arabinopyranosyl-(4â€22â€2)-(CGAATTCG). Helvetica Chimica Acta, 2002, 85, 4055-4073.	1.0	13
76	C-Nucleosidations with 2,6-Diamino-5,8-diaza-7,9-dicarba-purine1. Organic Letters, 2003, 5, 2071-2074.	2.4	13
77	Base-Pairing Systems Related to TNA Containing Phosphoramidate Linkages: Synthesis of Building Blocks and Pairing Properties. Chemistry and Biodiversity, 2004, 1, 939-979.	1.0	13
78	Diastereoselective Self ondensation of Dihydroxyfumaric Acid in Water: Potential Route to Sugars. Angewandte Chemie - International Edition, 2011, 50, 8127-8130.	7.2	13
79	Prebiotic Phosphorylation of Uridine using Diamidophosphate in Aerosols. Scientific Reports, 2019, 9, 13527.	1.6	13
80	Depsipeptide Nucleic Acids: Prebiotic Formation, Oligomerization, and Self-Assembly of a New Proto-Nucleic Acid Candidate. Journal of the American Chemical Society, 2021, 143, 13525-13537.	6.6	13
81	Mapping the Landscape of Potentially Primordial Informational Oligomers: (3′↲′)â€ <scp>D</scp> â€Phosphoglyceric Acid Linked Acyclic Oligonucleotides Tagged with 2,4â€Disubs 5â€Aminopyrimidines as Recognition Elements. Chemistry - an Asian Journal, 2011, 6, 1252-1262.	sti un ted	12
82	Heterogeneous Pyrophosphateâ€Linked DNA–Oligonucleotides: Aversion to DNA but Affinity for RNA. Chemistry - A European Journal, 2018, 24, 6837-6842.	1.7	12
83	Bis(dimethylamino)phosphorodiamidate: A Reagent for the Regioselective Cyclophosphorylation ofcis-Diols Enabling One-Step Access to High-Value Target Cyclophosphates. Organic Letters, 2019, 21, 7400-7404.	2.4	12
84	Mannich-Type C-Nucleosidations in the 5,8-Diaza-7,9-dicarba-purine Family1. Organic Letters, 2004, 6, 3691-3694.	2.4	11
85	Microwave-assisted preparation of nucleoside-phosphoramidites. Chemical Communications, 2014, 50, 7463-7465.	2.2	11
86	The Unexpected Baseâ€Pairing Behavior of Cyanuric Acid in RNA and Ribose versus Cyanuric Acid Induced Helicene Assembly of Nucleic Acids: Implications for the Preâ€RNA Paradigm. Chemistry - A European Journal, 2021, 27, 4033-4042.	1.7	11
87	Prebiotically Plausible RNA Activation Compatible with Ribozyme atalyzed Ligation. Angewandte Chemie - International Edition, 2021, 60, 2952-2957.	7.2	11
88	Diamidophosphate (DAP) – A Plausible Prebiotic Phosphorylating Reagent with a Chem to BioChem Potential?. ChemBioChem, 2021, 22, 3001-3009.	1.3	11
89	Synthesis of orotidine by intramolecular nucleosidation. Chemical Communications, 2015, 51, 5618-5621.	2.2	10
90	A Plausible Prebiotic Oneâ€Pot Synthesis of Orotate and Pyruvate Suggestive of Common Protometabolic Pathways. Angewandte Chemie - International Edition, 2022, , .	7.2	10

#	Article	IF	CITATIONS
91	Chemical Etiology of Nucleic Acid Structure: The Pentulofuranosyl Oligonucleotide Systems: The (1′→3′)â€i²â€ <scp>L</scp> â€Ribulo, (4′→3′)â€i±â€ <scp>L</scp> â€Xylulo, and (1′→3′)â€i±â A European Journal, 2013, 19, 15336-15345.	ì €≮ scp>L	<b 9cp>â€Xy
92	Orotidine-Containing RNA: Implications for the Hierarchical Selection (Systems Chemistry Emergence) of RNA. Chemistry - A European Journal, 2017, 23, 12668-12675.	1.7	9
93	Nucleobase modification by an RNA enzyme. Nucleic Acids Research, 2017, 45, 1345-1354.	6.5	9
94	Chimeric XNA: An Unconventional Design for Orthogonal Informational Systems. Chemistry - A European Journal, 2018, 24, 12811-12819.	1.7	9
95	An expedient synthesis of I-ribulose and derivatives. Carbohydrate Research, 2011, 346, 703-707.	1.1	8
96	Hydrogen-Bonding Complexes of 5-Azauracil and Uracil Derivatives in Organic Medium. Journal of Organic Chemistry, 2015, 80, 7066-7075.	1.7	7
97	RNA–DNA Chimeras in the Context of an RNA World Transition to an RNA/DNA World. Angewandte Chemie, 2016, 128, 13398-13403.	1.6	7
98	Separations of Carbohydrates with Noncovalent Shift Reagents by Frequency-Modulated Ion Mobility-Orbitrap Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2021, 32, 2472-2480.	1.2	7
99	Tautomerism in 5,8-Diaza-7,9-dicarbaguanine (â€~Alloguanine'). Helvetica Chimica Acta, 2005, 88, 1960-1968	.1.0	6
100	A Plausible Prebiotic Origin of Glyoxylate: Nonenzymatic Transamination Reactions of Glycine with Formaldehyde. Synlett, 2016, 28, 93-97.	1.0	6
101	Small molecule-mediated duplex formation of nucleic acids with â€~incompatible' backbones. Chemical Communications, 2016, 52, 5436-5439.	2.2	6
102	Base-Mediated Cascade Aldol Addition and Fragmentation Reactions of Dihydroxyfumaric Acid and Aromatic Aldehydes: Controlling Chemodivergence via Choice of Base, Solvent, and Substituents. Journal of Organic Chemistry, 2018, 83, 14219-14233.	1.7	6
103	Synthesis and hydrolytic stability of cyclic phosphatidic acids: implications for synthetic- and proto-cell studies. Chemical Communications, 2022, 58, 6231-6234.	2.2	6
104	Synthesis of phosphoramidites of isoGNA, an isomer of glycerol nucleic acid. Beilstein Journal of Organic Chemistry, 2014, 10, 2131-2138.	1.3	5
105	pHâ€controlled reaction divergence of decarboxylation versus fragmentation in reactions of dihydroxyfumarate with glyoxylate and formaldehyde: parallels to biological pathways. Journal of Physical Organic Chemistry, 2016, 29, 352-360.	0.9	5
106	Reaction of glycine with glyoxylate: Competing transaminations, aldol reactions, and decarboxylations. Journal of Physical Organic Chemistry, 2017, 30, e3709.	0.9	5
107	Prebiotic Phosphorylation and Concomitant Oligomerization of Deoxynucleosides to form DNA. Angewandte Chemie, 2021, 133, 10870-10878.	1.6	5
108	Concurrent Prebiotic Formation of Nucleosideâ€Amidophosphates and Nucleosideâ€Triphosphates Potentiates Transition from Abiotic to Biotic Polymerization. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5

#	Article	IF	CITATIONS
109	Prebiotic Organic Chemistry and Chemical pre-Biology: Speaking to the Synthetic Organic Chemists. Synlett, 2016, 28, 1-11.	1.0	4
110	The Abiotic Oxidation of Organic Acids to Malonate. Synlett, 2016, 28, 98-102.	1.0	4
111	The Oligomerization of Glucose Under Plausible Prebiotic Conditions. Origins of Life and Evolution of Biospheres, 2019, 49, 225-240.	0.8	4
112	PrÃ b iotisch plausible RNAâ€Aktivierung kompatibel mit ribozymkatalysierter Ligation. Angewandte Chemie, 2021, 133, 2988-2993.	1.6	4
113	Microwaveâ€Assisted Phosphitylation of DNA and RNA Nucleosides and Their Analogs. Current Protocols in Nucleic Acid Chemistry, 2015, 60, 2.19.1-2.19.20.	0.5	3
114	A sensitive quantitative analysis of abiotically synthesized short homopeptides using ultraperformance liquid chromatography and time-of-flight mass spectrometry. Journal of Chromatography A, 2020, 1630, 461509.	1.8	3
115	Concurrent Prebiotic Formation of Nucleosideâ€Amidophosphates and Nucleosideâ€Triphosphates Potentiates Transition from Abiotic to Biotic Polymerization. Angewandte Chemie, 2022, 134, .	1.6	3
116	Effect of temperature modulations on TEMPO-mediated regioselective oxidation of unprotected carbohydrates and nucleosides. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2759-2765.	1.0	2
117	Pentopyranosyl Oligonucleotide Systems, Communication No. 10 , The α-L-Lyxopyranosyl-(4′→2′)-oligonucleotide System. , 2001, 84, 1778.		2
118	A Plausible Prebiotic Oneâ€Pot Synthesis of Orotate and Pyruvate Suggestive of Common Protometabolic Pathways. Angewandte Chemie, 0, , .	1.6	2
119	Correction to "Production of Tartrates by Cyanide-Mediated Dimerization of Glyoxylate: A Potential Abiotic Pathway to the Citric Acid Cycle― Journal of the American Chemical Society, 2014, 136, 11846-11846.	6.6	1
120	Mineral-Induced Enantioenrichment of Tartaric Acid. Synlett, 2016, 28, 89-92.	1.0	1
121	Investigations towards the Synthesis of 5-Amino-l-lyxofuranosides and 4-Amino-lyxopyranosides and NMR Analysis. SynOpen, 2017, 01, 0029-0040.	0.8	1
122	Organic acid shift reagents for the discrimination of carbohydrate isobars by ion mobility-mass spectrometry. Analyst, The, 2020, 145, 8008-8015.	1.7	1
123	Chemical Origins of Life: Its Engagement with Society. Trends in Chemistry, 2020, 2, 406-409.	4.4	1
124	Regioselective -Phosphorylation of Aldoses in Aqueous Solution. Angewandte Chemie - International Edition, 2000, 39, 2281-2285.	7.2	1
125	A Search for Structural Alternatives of RNA. Journal of the Mexican Chemical Society, 2019, 53, .	0.2	1
126	Frontiers in Prebiotic Chemistry and Early Earth Environments. Origins of Life and Evolution of Biospheres, 0, , .	0.8	1

#	Article	IF	CITATIONS
127	Mannich-Type C-Nucleosidations with 7-Carba-purines and 4-Aminopyrimidines. Synlett, 2005, 2005, 0744-0750.	1.0	Ο
128	Cover Picture: Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligodipeptides and Oligodipeptoids Tagged with Triazines as Recognition Elements / Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligodipeptides Tagged with 2,4-Disubstituted 5-Aminopyrimidines as Recognition Elements (Angew. Chem. Int. Ed. 14/2007). Angewandte Chemie - International Edition, 2007, 46, 2333-2333.	7.2	0
129	Frontispiece: Life's Biological Chemistry: A Destiny or Destination Starting from Prebiotic Chemistry?. Chemistry - A European Journal, 2018, 24, .	1.7	Ο
130	Frontispiece: Chimeric XNA: An Unconventional Design for Orthogonal Informational Systems. Chemistry - A European Journal, 2018, 24, .	1.7	0
131	Synthesis of 2-Thioorotidine and Comparison of Its Unusual Instability with Its Canonical Pyrimidine Counterparts. Journal of Organic Chemistry, 2019, 84, 14427-14435.	1.7	0
132	Frontispiece: The Unexpected Baseâ€Pairing Behavior of Cyanuric Acid in RNA and Ribose versus Cyanuric Acid Induced Helicene Assembly of Nucleic Acids: Implications for the Preâ€RNA Paradigm. Chemistry - A European Journal, 2021, 27, .	1.7	0
133	Towards an Understanding of the Molecular Mechanisms of Variable Unnatural Baseâ€Pair Behavior: A Biophysical Analysis of dNaMâ€dTPT3. Chemistry - A European Journal, 2021, 27, 13991-13997.	1.7	0
134	Furanose. , 2011, , 619-619.		0
135	p-RNA. , 2011, , 1339-1341.		0
136	Formation of Sugar Phosphates under Potentially Natural Conditions. Mineralogical Magazine, 1998, 62A, 815-815.	0.6	0
137	Furanose. , 2015, , 903-904.		0
138	p-RNA., 2015,, 2017-2021.		0
139	Innenrücktitelbild: Concurrent Prebiotic Formation of Nucleosideâ€Amidophosphates and Nucleosideâ€Triphosphates Potentiates Transition from Abiotic to Biotic Polymerization (Angew. Chem.) Tj ETQ0	- 1 1.6 .784	- 13104 rgBT /O\