Suehiro Iwata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11415608/publications.pdf

Version: 2024-02-01

81434 134545 4,958 145 41 62 citations h-index g-index papers 150 150 150 2750 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electronic origin of the dependence of hydrogen bond strengths on nearest-neighbor and next-nearest-neighbor hydrogen bonds in polyhedral water clusters (H sub>2 $<$ I sub>0) I sub>n I sub>, n = 8, 20 and 24. Physical Chemistry Chemical Physics, 2016, 18, 19746-19756.	1.3	8
2	Hydrogen-Bonded Networks in Hydride Water Clusters, F ^{â€"} (H ₂ O) _{<i>n</i>} and Cl ^{â€"} (H ₂ O) _{<i>n</i>} : Cubic Form of F ^{â€"} (H ₂ O) ₇ and Cl ^{â€"} (H ₂ O) ₇	1.1	9
3	Journal of Physical Chemistry A, 2015, 119, 10241-10253. Quantum chemical studies of M(BH4)n and M(AlH4)n, M=Li and Na. Computational and Theoretical Chemistry, 2014, 1043, 79-89.	1.1	1
4	Analysis of hydrogen bond energies and hydrogen bonded networks in water clusters (H ₂ O) ₂₀ and (H ₂ O) ₂₅ using the charge-transfer and dispersion terms. Physical Chemistry Chemical Physics, 2014, 16, 11310-11317.	1.3	21
5	Cooperative Roles of Charge Transfer and Dispersion Terms in Hydrogen-Bonded Networks of $(H \cdot Sub \cdot 2 \cdot Sub \cdot C) \cdot Sub \cdot (S$	1.1	24
6	Ab Initio Molecular Orbital Study on the Excited States of [2.2]-, [3.3]-, and Siloxane-Bridged Paracyclophanes. Journal of Physical Chemistry A, 2012, 116, 10194-10202.	1.1	15
7	Energy analysis of weak electron-donor–acceptor complexes and water clusters with the perturbation theory based on the locally projected molecular orbitals: charge-transfer and dispersion terms. Physical Chemistry Chemical Physics, 2012, 14, 7787.	1.3	11
8	Ab Initio Studies of Aromatic Excimers Using Multiconfiguration Quasi-Degenerate Perturbation Theory. Journal of Physical Chemistry A, 2011, 115, 7687-7699.	1.1	73
9	Dispersion energy evaluated by using locally projected occupied and excited molecular orbitals for molecular interaction. Journal of Chemical Physics, 2011, 135, 094101.	1.2	14
10	Absolutely Local Excited Orbitals in the Higher Order Perturbation Expansion for the Molecular Interaction. Journal of Physical Chemistry B, 2008, 112, 16104-16109.	1.2	8
11	Structures, Spectroscopies, and Reactions of Atomic Ions with Water Clusters. Advances in Chemical Physics, 2007, , 431-523.	0.3	39
12	Theoretical Studies of Group 1 Metal Complexes with Hydrogen Fluoride, M(HF)n, M = Li, Na, and K:Â A New Type of Electridesâ€. Journal of Physical Chemistry A, 2007, 111, 7499-7503.	1.1	4
13	The single excitation perturbation expansion theory based on the locally projected molecular orbitals for molecular interaction: Comparison with the counterpoise corrected energy. Chemical Physics Letters, 2006, 431, 204-209.	1.2	9
14	Perturbation expansion theory corrected from basis set superposition error II. Charge transfer, pair correlationand dispersion terms. Theoretical Chemistry Accounts, 2006, 117, 137-144.	0.5	20
15	LOCALLY PROJECTED MOLECULAR ORBITAL THEORY FOR MOLECULAR INTERACTION WITH A HIGH-SPIN OPEN-SHELL MOLECULE. Journal of Theoretical and Computational Chemistry, 2006, 05, 819-833.	1.8	4
16	Theoretical study of photoabsorption cross-section of water cluster anions: the size and isomer dependences. Journal of Electron Spectroscopy and Related Phenomena, 2005, 142, 277-281.	0.8	1
17	Perturbation expansion theory corrected from basis set superposition error. I. Locally projected excited orbitals and single excitations. Journal of Chemical Physics, 2004, 120, 3555-3562.	1.2	34
18	Noble Gas Clusters Doped with a Metal Ion I:  Ab Initio Studies of Na+Arn. Journal of Physical Chemistry A, 2004, 108, 683-690.	1.1	23

#	Article	IF	CITATIONS
19	Theoretical studies on the molecular dependence of bond dissociation after core excitations II: CH3CO(CH2)nCN,n = 0-3. Journal of Computational Chemistry, 2003, 24, 1329-1335.	1.5	5
20	Theoretical molecular Auger spectra with electron population analysis. Journal of Electron Spectroscopy and Related Phenomena, 2003, 128, 103-117.	0.8	43
21	Electronic Spectra and Structures of Solvated NH4Radicals, NH4(NH3)n(n= 1â^'8). Journal of Physical Chemistry A, 2002, 106, 5242-5248.	1.1	29
22	Theoretical Study on the Weakly-Bound Complexes in the Reactions of Hydroxyl Radical with Saturated Hydrocarbons (Methane, Ethane, and Propane). Journal of Physical Chemistry A, 2002, 106, 2652-2658.	1.1	18
23	New time-independent perturbation theory for the multireference problem. International Journal of Quantum Chemistry, 2002, 86, 256-264.	1.0	24
24	Accurate evaluation of Einstein's A and B coefficients of rovibrational transitions for carbon monoxide: spectral simulation of \hat{l} "v=2 rovibrational transitions in the solar atmosphere observed by a satellite. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 72, 813-825.	1.1	7
25	Theoretical studies on the molecular dependence of the bond dissociation after the core excitations. CH3OCO(CH2)nCN, n=0, 1, 2. Journal of Electron Spectroscopy and Related Phenomena, 2001, 120, 137-148.	0.8	12
26	Basis set superposition error free self-consistent field method for molecular interaction in multi-component systems: Projection operator formalism. Journal of Chemical Physics, 2001, 115, 3553-3560.	1.2	75
27	A theoretical study of Si4H2 cluster with ab initio and density functional theory methods. Journal of Chemical Physics, 2001, 114, 1278-1285.	1.2	9
28	2 Electronic and geometric structures of water cluster complexes with a group 1 metal atom: Electron-hydrogen bond in the OH{e}HO structure. Advances in Metal and Semiconductor Clusters, 2001, , 39-75.	1.5	7
29	Ab initio MO study of the A, D and third 2Î states of CO+. Journal of Electron Spectroscopy and Related Phenomena, 2000, 108, 225-234.	0.8	11
30	Electron-hydrogen bonds and OH harmonic frequency shifts in water cluster complexes with a group 1 metal atom, M(H2O)n (M=Li and Na). Journal of Chemical Physics, 2000, 112, 5705-5710.	1.2	52
31	Accurate potential energy and transition dipole moment curves for several electronic states of CO+. Journal of Chemical Physics, 2000, 112, 1804-1808.	1.2	49
32	Theoretical study of multidimensional proton tunneling in the excited state of tropolone. Journal of Chemical Physics, 2000, 112, 6322-6328.	1.2	42
33	Photodissociation dynamics of argon cluster ions. Journal of Chemical Physics, 1999, 110, 8492-8500.	1.2	2
34	Size-extensive calculations of static structure factors from the coupled cluster singles and doubles model. Journal of Chemical Physics, 1999, 111, 827-832.	1.2	20
35	Theoretical study of vibrational spectra for Clâ^'(H2O): temperature dependence and the influence of Arn (n=1â€"3). Chemical Physics Letters, 1999, 312, 522-529.	1.2	11
36	Theoretical studies of the water-cluster anions containing the OH{e}HO structure: energies and harmonic frequencies. Chemical Physics Letters, 1999, 315, 433-440.	1.2	44

#	Article	IF	CITATIONS
37	Theoretical Studies of Structures and Ionization Threshold Energies of Water Cluster Complexes with a Group 1 Metal, M(H2O)n(M = Li and Na). Journal of Physical Chemistry A, 1999, 103, 6134-6141.	1.1	61
38	<i>Ab initio</i> Monte Carlo simulation using multicanonical algorithm: temperature dependence of the average structure of water dimer. Molecular Physics, 1999, 96, 349-358.	0.8	12
39	Structures and Photoelectron Spectroscopies of Si2C2- Studied with ab Initio Multicanonical Monte Carlo Simulation. Journal of Physical Chemistry A, 1999, 103, 6442-6447.	1.1	2
40	Dipole-bound and interior electrons in water dimer and trimer anions: ab initio MO studies. Chemical Physics Letters, 1998, 287, 553-562.	1.2	52
41	Ab initio MO and density functional studies on the vibrational spectra of 1,4-benzoquinone, and its anion and dianion. Chemical Physics, 1998, 230, 45-56.	0.9	14
42	Analytical second derivatives in ab initio Hartreeâ€"Fock crystal orbital theory of polymers. Computational and Theoretical Chemistry, 1998, 451, 121-134.	1.5	20
43	Ab Initio Hartreeâ^'Fock and Density Functional Studies on the Structures and Vibrations of an Infinite Hydrogen Fluoride Polymer. Journal of Physical Chemistry A, 1998, 102, 8426-8436.	1.1	29
44	Theoretical assignments of the photo-dissociation excitation spectra of Mg+ ion complexes with water clusters: Multi-reference CI studies. Journal of Chemical Physics, 1998, 108, 10078-10083.	1,2	28
45	Static structure factor and electron correlation effects studied by inelastic x-ray scattering spectroscopy. Journal of Chemical Physics, 1998, 108, 4545-4553.	1.2	38
46	Analytical energy gradients in second-order Mo/ller–Plesset perturbation theory for extended systems. Journal of Chemical Physics, 1998, 109, 4147-4155.	1,2	48
47	Geometric and electronic structures of fluorine bound silicon clusters. Journal of Chemical Physics, 1998, 108, 8039-8058.	1.2	37
48	Density functional crystal orbital study on the normal vibrations and phonon dispersion curves of all-trans polyethylene. Journal of Chemical Physics, 1998, 108, 7901-7908.	1,2	34
49	Density functional crystal orbital study on the normal vibrations of polyacetylene and polymethineimine. Journal of Chemical Physics, 1997, 107, 10075-10084.	1.2	66
50	Geometric and electronic structures of silicon–sodium binary clusters. I. Ionization energy of SinNam. Journal of Chemical Physics, 1997, 107, 3056-3070.	1,2	80
51	Ab initio studies on the structures, vertical electron detachment energies, and stabilities of CnPâ ⁻ ' clusters. Journal of Chemical Physics, 1997, 107, 7323-7330.	1.2	32
52	Diazasiline (SiNN): Is there a conflict between experiment and theory?. Journal of Chemical Physics, 1997, 106, 151-157.	1.2	21
53	Geometric and electronic structures of silicon–sodium binary clusters. II. Photoelectron spectroscopy of SinNamⰠcluster anions. Journal of Chemical Physics, 1997, 107, 10029-10043.	1.2	56
54	Ab initio MO studies of neutral and anionic SiCn clusters (n=2–5). Journal of Chemical Physics, 1997, 107, 10051-10061.	1,2	48

#	Article	IF	CITATIONS
55	Ab Initio Study of the Isomers: HNNSi, HSiNN, and HNSiN. Bulletin of the Chemical Society of Japan, 1997, 70, 2057-2062.	2.0	3
56	Theoretical Prediction of Intracluster Reactions of B+(H2O)2and B+(H2O)3: Hybrid Procedure of Ab Initio MO Calculations and Monte Carlo Samplings. Bulletin of the Chemical Society of Japan, 1997, 70, 2619-2629.	2.0	4
57	The vibrational spectrum of H2O2+â‹ radical cation: An illustration of symmetry breaking. Journal of Chemical Physics, 1997, 106, 4877-4888.	1.2	26
58	Ab Initio Study of Photochemical Reactions of Ammonia Dimer Systems. Journal of Physical Chemistry A, 1997, 101, 3613-3618.	1.1	17
59	Ab Initio Studies on the Structures, Vertical Electron Detachment Energies, and Fragmentation Energies of CnB-Clusters. Journal of Physical Chemistry A, 1997, 101, 591-596.	1.1	53
60	Molecular Orbital Studies of the Structures and Reactions of a Singly Charged Calcium Ion with Water Clusters, Ca+(H2O)n. Journal of Physical Chemistry A, 1997, 101, 487-496.	1.1	43
61	Resonance Raman and FTIR Spectra of Isotope-Labeled Reduced 1,4-Benzoquinone and Its Protonated Forms in Solutions. Journal of Physical Chemistry A, 1997, 101, 622-631.	1.1	67
62	Ab initio MO studies of Si4NO+ clusters. Chemical Physics Letters, 1997, 273, 337-344.	1.2	4
63	Theoretical Studies of Boronâ^'Water Cluster Ions B+(H2O)nand Aluminumâ^'Water Cluster Ions Al+(H2O)n:Â Isomers and Intracluster Reactions. The Journal of Physical Chemistry, 1996, 100, 3377-3386.	2.9	37
64	Photoelectron spectroscopy of silicon–fluorine binary cluster anions (SinFâ^'m). Journal of Chemical Physics, 1996, 105, 5369-5376.	1.2	58
65	Hybrid procedure of ab initio molecular orbital calculation and Monte Carlo simulation for studying intracluster reactions: applications to Mg+(H2O)n (n = $1\hat{a}^4$). Chemical Physics Letters, 1996, 260, 1-6.	1.2	30
66	On approximating electron repulsion integrals with linear combination of atomic-electron distributions. International Journal of Quantum Chemistry, 1996, 60, 1319-1324.	1.0	5
67	Multiconfiguration selfâ€consistent field procedure employing linear combination of atomicâ€electron distributions. Journal of Chemical Physics, 1996, 105, 3604-3611.	1.2	35
68	Theoretical study of carbon doped small silicon clusters: Electron affinities of SinC (n=2–5). Journal of Chemical Physics, 1996, 104, 8593-8604.	1.2	27
69	Theoretical studies of geometric structures of phenolâ€water clusters and their infrared absorption spectra in the O–H stretching region. Journal of Chemical Physics, 1996, 105, 420-431.	1.2	110
70	Size dependence of the photoabsorption spectra of Ar+n,n= $4\hat{a}$ e"25: A solvation effect on the Ar+3chromophore. Journal of Chemical Physics, 1996, 105, 10734-10742.	1.2	22
71	Ab InitioStudies of Silicon and Nitrogen Clusters:Â Cyclic or Linear Si2N?. The Journal of Physical Chemistry, 1996, 100, 10919-10927.	2.9	33
72	Structures and Energetics of New Nitrogen and Silicon Molecules:Â An Ab Initio Study of Si2N2. The Journal of Physical Chemistry, 1996, 100, 16155-16161.	2.9	21

#	Article	IF	CITATIONS
73	Ab initio studies on the structures and vertical electron detachment energies of copper-water negative ion clusters Cuâ ⁻ '(H2O)n and CuOHâ ⁻ '(H2O)nâ ⁻ '1. Chemical Physics Letters, 1995, 232, 72-78.	1.2	37
74	Three-center expansion of electron repulsion integrals with linear combination of atomic electron distributions. Chemical Physics Letters, 1995, 240, 578-584.	1.2	44
75	Photoelectron spectroscopy of AlnS1â^' clusters (n=1â^'9). Journal of Chemical Physics, 1995, 102, 660-665.	1.2	31
76	Molecular Orbital Studies of the Structures and Reactions of Singly Charged Magnesium Ion with Water Clusters, Mg+(H2O)n. Journal of the American Chemical Society, 1995, 117, 755-763.	6.6	130
77	Photoelectron spectroscopy of silicon–carbon cluster anions (SinCâ^'m). Journal of Chemical Physics, 1995, 103, 2050-2057.	1.2	82
78	Theoretical study on the non-adiabatic photodissociation process of argon cluster ions Ar7+. International Journal of Quantum Chemistry, 1994, 52, 529-539.	1.0	5
79	Theoretical study of siliconî—,sodium binary clusters. Geometrical and electronic structures of Si Na (n) Tj ETQq1 1	. 0.78431 1.2	4 rgBT /Ove
80	Photoionization electronic spectroscopy of AlNa. Chemical Physics Letters, 1994, 222, 353-357.	1.2	9
81	Potential energy surfaces of some low-lying states of fluoroformyl radical FCO. Chemical Physics, 1994, 184, 97-106.	0.9	1
82	Theoretical Studies of Ammonia–Halogen and Methylamine–Halogen Complexes: Geometries, Harmonic Vibrational Frequencies and Their Infrared Intensities, and Excited States of Ammonia–Chlorine Monofluoride Complex. Bulletin of the Chemical Society of Japan, 1994, 67, 3172-3178.	2.0	14
83	Theoretical assignment of the vibronic bands in the photoelectron spectra of N2 below 30 eV. Chemical Physics Letters, 1993, 211, 319-327.	1.2	24
84	Assignment of the photoelectron spectrum of HCl above 20 eV. Chemical Physics Letters, 1993, 210, 187-192.	1.2	16
85	The geometric and electronic structures of Arn+(n=3–27). Journal of Chemical Physics, 1993, 98, 3038-3048.	1.2	107
86	Theoretical Studies of the Aluminum–Water Clusters Al(H2O)nand Their lons [Al(H2O)n]+. Bulletin of the Chemical Society of Japan, 1993, 66, 3245-3252.	2.0	37
87	Photodissociation of size-selected aquamagnesium (Mg+(H2O)n) ions for $n=1$ and 2. The Journal of Physical Chemistry, 1992, 96, 8259-8264.	2.9	126
88	Ab initio studies of the low-lying states of BeO. Theoretica Chimica Acta, 1992, 81, 223-235.	0.9	11
89	Theoretical study of the three isomers of the SiNO radical. Chemical Physics Letters, 1992, 189, 401-407.	1.2	7
90	The excimer emission spectra and the interaction potential energy of the ground and excited states of He and alkali-metal ion systems. Chemical Physics Letters, 1992, 192, 443-450.	1.2	6

#	Article	IF	Citations
91	Theoretical studies of the new radicals SiNNH and SiCOH. Chemical Physics Letters, 1992, 195, 475-481.	1.2	5
92	Theoretical studies of vacuum ultraviolet emission spectra of NeLi+ and ArLi+. Journal of Chemical Physics, 1991, 94, 3707-3714.	1.2	12
93	Photodissociation of Ar+3 cluster ion. Chemical Physics Letters, 1990, 171, 433-438.	1.2	62
94	Molecular orbital study on the mechanism of oxidation of a beryllium atom in acidic solution. Journal of the American Chemical Society, 1990, 112, 7189-7196.	6.6	16
95	Theoretical study of the photoabsorption cross sections of HOCl and HOF. Chemical Physics, 1989, 135, 75-83.	0.9	32
96	Ab initio self-consistent-field molecular orbital study on the hydration of three oxidation states of beryllium in aqueous solution. The Journal of Physical Chemistry, 1989, 93, 2165-2169.	2.9	24
97	Application of finite-element method to the two-dimensional Schr $\tilde{A}\P$ dinger equation. Journal of Computational Chemistry, 1988, 9, 222-231.	1.5	22
98	Application of the higher order finite-element method to one-dimensional Schr $\tilde{A}\P$ dinger equation. Journal of Computational Chemistry, 1988, 9, 827-835.	1.5	15
99	Theoretical emission spectra of NeAl+ and ArAl+ in the vacuum ultraviolet region. Chemical Physics Letters, 1988, 146, 275-279.	1.2	4
100	Promotion of the proton transfer reaction by the intermolecular stretching mode: Application of the twoâ€dimensional finite element method to the nuclear Schrödinger equation. Journal of Chemical Physics, 1988, 89, 2932-2937.	1.2	59
101	Ab initio study of structure and stability of beryllium compounds. Computational and Theoretical Chemistry, 1987, 152, 101-117.	1.5	18
102	Theoretical study of hydrated Be2+ ions. Chemical Physics, 1987, 116, 193-202.	0.9	40
103	Theoretical study of hydrogen-bridged beryllium compounds Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1986, 1986, 1377-1383.	0.1	3
104	Ab initio studies on the vacuum ultraviolet (VUV) excimer emission spectra of NeB+ and ArB+. Journal of Chemical Physics, 1985, 82, 2346-2351.	1.2	17
105	An MCSCF study of the lowâ€lying states of transâ€butadiene. Journal of Chemical Physics, 1985, 83, 1140-1148.	1.2	81
106	Excitation and dispersed fluorescence spectra of the $1B2(V)-1\hat{1}Eg+(X\hat{I}_{,,})$ transition of jet-cooled CS2. Chemical Physics, 1984, 86, 173-188.	0.9	27
107	Quantum chemical interpretation of oxidation number as applied to carbon and oxygen compounds. Numerical analysis of the electron distribution with ab initio molecular orbital wave functions. Journal of the American Chemical Society, 1984, 106, 2787-2792.	6.6	13
108	Electronic and molecular structure of the water dimer cation. A theoretical study. Chemical Physics Letters, 1983, 95, 579-583.	1.2	27

#	Article	IF	CITATIONS
109	Direct calculation of the frequency-dependent polarizability from a Cl matrix. Chemical Physics Letters, 1983, 102, 544-549.	1.2	23
110	Fluorescence cross sections and electronic transition moments for the A 2Σ+→X 2Πtransition in HCl+ b photoionization. Comparison with the ab initio calculations. Journal of Chemical Physics, 1983, 79, 4805-4810.	y 1.2	22
111	Analysis of the oxidation state and oxidation number by ab initio molecular orbital calculations: chlorine and sulfur compounds. Journal of the American Chemical Society, 1982, 104, 3998-4005.	6.6	19
112	Valence type vacant orbitals for configuration interaction calculations. Chemical Physics Letters, 1981, 83, 134-138.	1,2	41
113	Double breakdown of Koopmans' theorem and strong correlation satellites in the He II photoelectron spectrum of O3. Chemical Physics, 1981, 58, 267-273.	0.9	33
114	Theabinitiopotential energy surfaces of some lowâ€lying states of acetylene. Journal of Chemical Physics, 1981, 74, 6830-6841.	1.2	11
115	Ab InitioStudies of the Hydrogen Atom Addition to Ethylene. Bulletin of the Chemical Society of Japan, 1980, 53, 61-67.	2.0	12
116	Active reaction subsystem CI studies of peroxy free radicals aminoperoxy radical (H2NO2). Chemical Physics Letters, 1980, 76, 375-379.	1,2	8
117	Potential energy curves of several excited states of the Ne2* excimer: Assignment of the transient absorption spectra of the excimer. Chemical Physics, 1979, 37, 251-257.	0.9	51
118	Breakdown of Koopmans' theorem and strong shake-up bands in the valence shell region of N2 photoelectron spectra. Chemical Physics, 1979, 39, 337-349.	0.9	45
119	Potential energy curves of low-lying states of HNO. Chemical Physics Letters, 1979, 66, 523-526.	1.2	20
120	Transannular Interaction in the Excited Triplet States of [2.2]Paracyclophane and Related Compounds. Bulletin of the Chemical Society of Japan, 1979, 52, 1346-1350.	2.0	24
121	One-center two electron repulsion parameters in the $\ddot{\mathbb{I}}\in$ and all-valence semi-empirical theories. Chemical Physics Letters, 1978, 57, 247-252.	1.2	3
122	Abinitiostudies of the βâ^'â€decay in OHT, NH2T, CH3T, and14CH4. Journal of Chemical Physics, 1977, 66, 4671-4676.	1,2	23
123	Molecular orbital studies of hydrogen bonds. Theoretica Chimica Acta, 1977, 44, 323-339.	0.9	44
124	Nonclassical terms in the true effective valence shell Hamiltonian: A second quantized formalism. Journal of Chemical Physics, 1976, 65, 1071-1088.	1.2	63
125	Analysis of exact valence shell hamiltonian: Nonclassical terms and molecular based parameters. Chemical Physics Letters, 1976, 38, 425-431.	1.2	17
126	Electronic absorption bandwidths of negative ions of aromatic hydrocarbons. Chemical Physics, 1976, 13, 65-72.	0.9	3

#	Article	IF	Citations
127	Solution of large configuration mixing matrices arising in partitioning technique and applications to the generalized eigenvalue problem. Chemical Physics, 1975, 11, 433-440.	0.9	16
128	Molecular orbital studies of hydrogen bonds. VI. Origin of red shift of .pipi.* transitions. trans-Acrolein-water complex. Journal of the American Chemical Society, 1975, 97, 966-970.	6.6	36
129	Ab initio evaluation of correlation contributions to the true Ï€â€electron Hamiltonian: Ethylene. Journal of Chemical Physics, 1974, 61, 1500-1509.	1.2	93
130	Multi-configuration electron-hole potential method for excited states. Theoretica Chimica Acta, 1974, 33, 285-297.	0.9	21
131	Molecular Interactions in Ground and Excited States. , 1974, , 277-316.		17
132	Molecular orbital studies of hydrogen bonds. IV. Hydrogen bonds in excited states of H2CO with H2O. Chemical Physics Letters, 1973, 19, 94-98.	1.2	29
133	Electronic spectra and electronic structures of [2.2] paracyclophane and related compounds. Journal of Molecular Spectroscopy, 1973, 46, 1-15.	0.4	60
134	Electronic spectra of ion radicals and their molecular orbital interpretation. III. Aromatic hydrocarbons. Journal of the American Chemical Society, 1973, 95, 3473-3483.	6.6	323
135	Molecular orbital studies of hydrogen bonds. V. Analysis of the hydrogen-bond energy between lower excited states of formaldehyde and water. Journal of the American Chemical Society, 1973, 95, 7563-7575.	6.6	71
136	Electronic absorption spectra of excess electrons in molecular aggregates. I. Trapped electrons in .gammairradiated amorphous solids at 77.deg.K. The Journal of Physical Chemistry, 1972, 76, 3683-3691.	2.9	56
137	Electronic absorption spectra of excess electrons in molecular aggregates. II. Solvated electrons. The Journal of Physical Chemistry, 1972, 76, 3691-3694.	2.9	13
138	Absorption Spectra of Dianthracene Anion Radical and Anthracene Dimer Anion. Journal of Chemical Physics, 1972, 56, 2858-2864.	1.2	65
139	Electronic spectra of ion-radicals and their molecular orbital interpretation. I. Aromatic nitro-substituted anion-radicals. The Journal of Physical Chemistry, 1971, 75, 2591-2602.	2.9	40
140	Charge-Transfer Complexes of Maleic Anhydride and Dichloromaleic Anhydride with Various Aromatic Compounds. Bulletin of the Chemical Society of Japan, 1970, 43, 713-720.	2.0	9
141	ESR Spectra of the Charge‶ransfer Triplet States of Some Molecular Complexes. Journal of Chemical Physics, 1969, 50, 993-1000.	1.2	73
142	Absorption and emission spectra of 1,2,4,5-tetracyanobenzene-naphthalene complex crystal. Journal of the American Chemical Society, 1967, 89, 2813-2819.	6.6	67
143	E.S.R. of the charge-transfer triplet state of the durene-tetracyanobenzene complex. Molecular Physics, 1967, 13, 489-490.	0.8	26
144	Phosphorescence of the Charge†Transfer Triplet States of Some Molecular Complexes. Journal of Chemical Physics, 1967, 47, 2203-2209.	1.2	122

Suehiro Iwata

#	Article	IF	CITATIONS
145	Molecular Complexes between 1,2,4,5-Tetracyanobenzene and Some Aromatic Electron Donors. Journal of the American Chemical Society, 1966, 88, 894-902.	6.6	123