Jos de la Fuente

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1141238/jose-de-la-fuente-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 21,983 502 123 h-index g-index citations papers 6.84 25,945 531 4.5 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
502	Fatal cases of bovine anaplasmosis in a herd infected with different Anaplasma marginale genotypes in southern Spain. <i>Ticks and Tick-borne Diseases</i> , 2022 , 13, 101864	3.6	O
501	A Quantum Vaccinomics Approach Based on Protein-Protein Interactions. <i>Methods in Molecular Biology</i> , 2022 , 2411, 287-305	1.4	1
500	Exploring the Ecological Implications of Microbiota Diversity in Birds: Natural Barriers Against Avian Malaria <i>Frontiers in Immunology</i> , 2022 , 13, 807682	8.4	1
499	Functional characterization of EGal producing lactic acid bacteria with potential probiotic properties <i>Scientific Reports</i> , 2022 , 12, 7484	4.9	0
498	Recent Advances on the Innate Immune Response to. <i>Frontiers in Cellular and Infection Microbiology</i> , 2021 , 11, 754455	5.9	1
497	The antibody response to the glycan EGal correlates with COVID-19 disease symptoms. <i>Journal of Medical Virology</i> , 2021 , 93, 2065-2075	19.7	14
496	Comparative analysis of tick salivary gland and cement elementome. <i>Heliyon</i> , 2021 , 7, e06721	3.6	2
495	Additional evidence on the efficacy of different Akirin vaccines assessed on Anopheles arabiensis (Diptera: Culicidae). <i>Parasites and Vectors</i> , 2021 , 14, 209	4	0
494	Arthropod Ectoparasites Have Potential to Bind SARS-CoV-2 via ACE. Viruses, 2021, 13,	6.2	2
493	Functional Food for the Stimulation of the Immune System Against Malaria. <i>Probiotics and Antimicrobial Proteins</i> , 2021 , 13, 1254-1266	5.5	6
492	Assessing the risks of SARS-CoV-2 in wildlife. <i>One Health Outlook</i> , 2021 , 3, 7	5	38
491	Citizen science initiative points at childhood BCG vaccination as a risk factor for COVID-19. <i>Transboundary and Emerging Diseases</i> , 2021 , 68, 3114-3119	4.2	3
490	Tick-human interactions: from allergic klendusity to the EGal syndrome. <i>Biochemical Journal</i> , 2021 , 478, 1783-1794	3.8	7
489	Characterization of the anti-EGal antibody profile in association with Guillain-Barr yndrome, implications for tick-related allergic reactions. <i>Ticks and Tick-borne Diseases</i> , 2021 , 12, 101651	3.6	5
488	Probiotic Bacteria with High Alpha-Gal Content Protect Zebrafish against Mycobacteriosis. <i>Pharmaceuticals</i> , 2021 , 14,	5.2	2
487	Detection of new Crimean-Congo haemorrhagic fever virus genotypes in ticks feeding on deer and wild boar, Spain. <i>Transboundary and Emerging Diseases</i> , 2021 , 68, 993-1000	4.2	14
486	Microbial community of Hyalomma lusitanicum is dominated by Francisella-like endosymbiont. <i>Ticks and Tick-borne Diseases</i> , 2021 , 12, 101624	3.6	4

485	Immunity to glycan EGal and possibilities for the control of COVID-19. Immunotherapy, 2021, 13, 185-18	38 3.8	8
484	Detection of environmental SARS-CoV-2 RNA in a high prevalence setting in Spain. <i>Transboundary and Emerging Diseases</i> , 2021 , 68, 1487-1492	4.2	21
483	SARS-CoV-2 in animals: potential for unknown reservoir hosts and public health implications. <i>Veterinary Quarterly</i> , 2021 , 41, 181-201	8	46
482	Enlisting the Embryonic ISE6 Cell Line to Investigate the Neuronal Basis of Tick-Pathogen Interactions. <i>Pathogens</i> , 2021 , 10,	4.5	4
481	Anti-Microbiota Vaccines Modulate the Tick Microbiome in a Taxon-Specific Manner. <i>Frontiers in Immunology</i> , 2021 , 12, 704621	8.4	11
480	Characterization by Quantitative Serum Proteomics of Immune-Related Prognostic Biomarkers for COVID-19 Symptomatology. <i>Frontiers in Immunology</i> , 2021 , 12, 730710	8.4	4
479	Cattle ticks and tick-borne diseases: a review of Uganda's situation. <i>Ticks and Tick-borne Diseases</i> , 2021 , 12, 101756	3.6	8
478	Vaccinomics: a future avenue for vaccine development against emerging pathogens. <i>Expert Review of Vaccines</i> , 2021 , 1-9	5.2	3
477	The EGal Syndrome and Potential Mechanisms Frontiers in Allergy, 2021, 2, 783279	Ο	2
476	Characterization of tick salivary gland and saliva alphagalactome reveals candidate alpha-gal syndrome disease biomarkers <i>Expert Review of Proteomics</i> , 2021 ,	4.2	2
475	Targeting the Exoskeleton Elementome to Track Tick Geographic Origins. <i>Frontiers in Physiology</i> , 2020 , 11, 572758	4.6	1
474	Host or pathogen-related factors in COVID-19 severity?. Lancet, The, 2020, 396, 1396-1397	40	4
473	Vaccination with Alpha-Gal Protects Against Mycobacterial Infection in the Zebrafish Model of Tuberculosis. <i>Vaccines</i> , 2020 , 8,	5.3	15
472	COVID-19 is likely to impact animal health. <i>Preventive Veterinary Medicine</i> , 2020 , 180, 105030	3.1	36
471	Gut Microbiota Abrogates Anti-EGal IgA Response in Lungs and Protects against Experimental Infection in Poultry. <i>Vaccines</i> , 2020 , 8,	5.3	14
470	Vaccination with Recombinant Subolesin Antigens Provides Cross-Tick Species Protection in and Crossbred Cattle in Uganda. <i>Vaccines</i> , 2020 , 8,	5.3	11
469	Quantitative Proteomics Identifies Metabolic Pathways Affected by Infection and Blood Feeding in the Sialoproteome of the Vector. <i>Vaccines</i> , 2020 , 8,	5.3	6
468	Modeling tick vaccines: a key tool to improve protection efficacy. <i>Expert Review of Vaccines</i> , 2020 , 19, 217-225	5.2	5

467	Allergic Reactions and Immunity in Response to Tick Salivary Biogenic Substances and Red Meat Consumption in the Zebrafish Model. <i>Frontiers in Cellular and Infection Microbiology</i> , 2020 , 10, 78	5.9	13
466	Experimental -Sheep Cycle of NV2Os Propagated in Tick Cell Cultures. <i>Frontiers in Veterinary Science</i> , 2020 , 7, 40	3.1	9
465	Challenges for the Control of Poultry Red Mite (Dermanyssus gallinae) 2020,		1
464	Quantification of the Animal Tuberculosis Multi-Host Community Offers Insights for Control. <i>Pathogens</i> , 2020 , 9,	4.5	15
463	A Novel Combined Scientific and Artistic Approach for the Advanced Characterization of Interactomes: The Akirin/Subolesin Model. <i>Vaccines</i> , 2020 , 8,	5.3	9
462	Vaccination with Ectoparasite Proteins Involved in Midgut Function and Blood Digestion Reduces Salmon Louse Infestations. <i>Vaccines</i> , 2020 , 8,	5.3	6
461	pathogen infection alters chemical composition of the exoskeleton of hard ticks (Acari: Ixodidae). <i>Computational and Structural Biotechnology Journal</i> , 2020 , 18, 253-257	6.8	5
460	A dataset for the analysis of antibody response to glycan alpha-Gal in individuals with immune-mediated disorders. <i>F1000Research</i> , 2020 , 9, 1366	3.6	4
459	Visual communication and learning from COVID-19 to advance preparedness for pandemics. <i>Exploration of Medicine</i> , 2020 , 1, 244-247	1.1	О
458	Changes in Serum Biomarkers of Oxidative Stress in Cattle Vaccinated with Tick Recombinant Antigens: A Pilot Study. <i>Vaccines</i> , 2020 , 9,	5.3	3
457	EGal-Based Vaccines: Advances, Opportunities, and Perspectives. <i>Trends in Parasitology</i> , 2020 , 36, 992-10	06.4	13
456	Alpha-gal syndrome: challenges to understanding sensitization and clinical reactions to alpha-gal. <i>Expert Review of Molecular Diagnostics</i> , 2020 , 20, 905-911	3.8	11
455	Immune Response to Tick-Borne Hemoparasites: Host Adaptive Immune Response Mechanisms as Potential Targets for Therapies and Vaccines. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	5
454	Anti-Tick Microbiota Vaccine Impacts Performance during Feeding. Vaccines, 2020, 8,	5.3	21
453	COVID-19 in the Developing World: Is the Immune Response to EGal an Overlooked Factor Mitigating the Severity of Infection?. ACS Infectious Diseases, 2020, 6, 3104-3108	5.5	7
452	Coronavirus in cat flea: findings and questions regarding COVID-19. Parasites and Vectors, 2020, 13, 409	4	11
451	Innate Immune Response to Tick-Borne Pathogens: Cellular and Molecular Mechanisms Induced in the Hosts. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	10
450	Control of tick infestations in wild roe deer (Capreolus capreolus) vaccinated with the Q38 Subolesin/Akirin chimera. <i>Vaccine</i> , 2020 , 38, 6450-6454	4.1	6

(2019-2020)

449	A dataset for the analysis of antibody response to glycan alpha-Gal in individuals with immune-mediated disorders. <i>F1000Research</i> , 2020 , 9, 1366	3.6	2
448	Tick and Host Derived Compounds Detected in the Cement Complex Substance. <i>Biomolecules</i> , 2020 , 10,	5.9	22
447	Infection with Inhibits the Production of IgE Antibodies to Egal in Humans: Towards a Conceptual Framework of the Hygiene Hypothesis?. <i>Vaccines</i> , 2020 , 8,	5.3	14
446	Comparative Proteomic Analysis of sensu lato (Acari: Ixodidae) Tropical and Temperate Lineages: Uncovering Differences During Infection. <i>Frontiers in Cellular and Infection Microbiology</i> , 2020 , 10, 6111	1 3 :9	3
445	Reduction in Oviposition of Poultry Red Mite () in Hens Vaccinated with Recombinant Akirin. <i>Vaccines</i> , 2019 , 7,	5.3	9
444	The redox metabolic pathways function to limit Anaplasma phagocytophilum infection and multiplication while preserving fitness in tick vector cells. <i>Scientific Reports</i> , 2019 , 9, 13236	4.9	6
443	Tick Bites Induce Anti-EGal Antibodies in Dogs. <i>Vaccines</i> , 2019 , 7,	5.3	14
442	A metaproteomics approach reveals changes in mandibular lymph node microbiota of wild boar naturally exposed to an increasing trend of Mycobacterium tuberculosis complex infection. <i>Tuberculosis</i> , 2019 , 114, 103-112	2.6	2
441	Tick-Pathogen Interactions: The Metabolic Perspective. <i>Trends in Parasitology</i> , 2019 , 35, 316-328	6.4	15
440	Modeling Modulation of the Tick Regulome in Response to for the Identification of New Control Targets. <i>Frontiers in Physiology</i> , 2019 , 10, 462	4.6	5
439	Environmental and Molecular Drivers of the EGal Syndrome. Frontiers in Immunology, 2019 , 10, 1210	8.4	50
438	Anaplasma phagocytophilum modifies tick cell microRNA expression and upregulates isc-mir-79 to facilitate infection by targeting the Roundabout protein 2 pathway. <i>Scientific Reports</i> , 2019 , 9, 9073	4.9	6
437	Host Richness Increases Tuberculosis Disease Risk in Game-Managed Areas. <i>Microorganisms</i> , 2019 , 7,	4.9	9
436	Molecular identification of spotted fever group Rickettsia in ticks collected from dogs and small ruminants in Greece. <i>Experimental and Applied Acarology</i> , 2019 , 78, 421-430	2.1	3
435	Oral Vaccination With a Formulation Combining Subolesin With Heat Inactivated Reduces Tick Infestations in Cattle. <i>Frontiers in Cellular and Infection Microbiology</i> , 2019 , 9, 45	5.9	11
434	Transcriptome and Proteome Response of Tick Vector to Infection. <i>Frontiers in Physiology</i> , 2019 , 10, 318	84.6	17
433	The alpha-Gal syndrome: new insights into the tick-host conflict and cooperation. <i>Parasites and Vectors</i> , 2019 , 12, 154	4	30
432	Meeting the challenge of tick-borne disease control: A proposal for 1000 Ixodes genomes. <i>Ticks and Tick-borne Diseases</i> , 2019 , 10, 213-218	3.6	5

431	A Vaccinomics Approach for the Identification of Tick Protective Antigens for the Control of and Infestations in Companion Animals. <i>Frontiers in Physiology</i> , 2019 , 10, 977	4.6	14
430	Delayed hypersensitivity reaction to mammalian galactose-日,3-galactose (任Gal) after repeated tick bites in a patient from France. <i>Ticks and Tick-borne Diseases</i> , 2019 , 10, 1057-1059	3.6	10
429	Evolutionary Insights into the Tick Hologenome. <i>Trends in Parasitology</i> , 2019 , 35, 725-737	6.4	27
428	A combination of antibodies against Bm86 and Subolesin inhibits engorgement of Rhipicephalus australis (formerly Rhipicephalus microplus) larvae in vitro. <i>Parasites and Vectors</i> , 2019 , 12, 362	4	13
427	Clinical gamasoidosis and antibody response in two patients infested with Ornithonyssus bursa (Acari: Gamasida: Macronyssidae). <i>Experimental and Applied Acarology</i> , 2019 , 78, 555-564	2.1	9
426	Tuberculosis vaccination sequence effect on protection in wild boar. <i>Comparative Immunology, Microbiology and Infectious Diseases</i> , 2019 , 66, 101329	2.6	3
425	Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite (De Geer, 1778). <i>Avian Pathology</i> , 2019 , 48, S52-S59	2.4	6
424	The Good, the Bad and the Tick. Frontiers in Cell and Developmental Biology, 2019, 7, 79	5.7	2
423	Guillain-Barr and Alpha-gal Syndromes: Saccharides-induced Immune Responses. <i>Exploratory Research and Hypothesis in Medicine</i> , 2019 , 000, 000-000	1	7
422	A vaccinology Approach to the Identification and Characterization of Candidate Protective Antigens for the Control of Poultry Red Mite Infestations. <i>Vaccines</i> , 2019 , 7,	5.3	9
421	Species occurrence of ticks in South America, and interactions with biotic and abiotic traits. <i>Scientific Data</i> , 2019 , 6, 299	8.2	2
420	Characterization of the bacterial microbiota in wild-caught Ixodes ventalloi. <i>Ticks and Tick-borne Diseases</i> , 2019 , 10, 336-343	3.6	14
419	Identification and characterization of vaccine candidates against Hyalomma anatolicum-Vector of Crimean-Congo haemorrhagic fever virus. <i>Transboundary and Emerging Diseases</i> , 2019 , 66, 422-434	4.2	12
418	Molecular identification of tick-borne pathogens in ticks collected from dogs and small ruminants from Greece. <i>Experimental and Applied Acarology</i> , 2018 , 74, 443-453	2.1	15
417	Controlling ticks and tick-borne diseases boking forward. <i>Ticks and Tick-borne Diseases</i> , 2018 , 9, 1354-1	35%	45
416	Impact of piglet oral vaccination against tuberculosis in endemic free-ranging wild boar populations. <i>Preventive Veterinary Medicine</i> , 2018 , 155, 11-20	3.1	25
415	Draft Genome Sequences of , , and Isolates from Different Hosts. <i>Genome Announcements</i> , 2018 , 6,		3
414	Genome-wide associations identify novel candidate loci associated with genetic susceptibility to tuberculosis in wild boar. <i>Scientific Reports</i> , 2018 , 8, 1980	4.9	11

413	The fossil record and the origin of ticks revisited. Experimental and Applied Acarology, 2018, 75, 255-261	2.1	11
412	Tick- and fly-borne bacteria in ungulates: the prevalence of Anaplasma phagocytophilum, haemoplasmas and rickettsiae in water buffalo and deer species in Central Europe, Hungary. <i>BMC Veterinary Research</i> , 2018 , 14, 98	2.7	22
411	Antiplasmodial activity of tick defensins in a mouse model of malaria. <i>Ticks and Tick-borne Diseases</i> , 2018 , 9, 844-849	3.6	12
410	Identification and molecular characterization of spotted fever group rickettsiae in ticks collected from farm ruminants in Lebanon. <i>Ticks and Tick-borne Diseases</i> , 2018 , 9, 104-108	3.6	13
409	Heat-inactivated Mycobacterium bovis protects zebrafish against mycobacteriosis. <i>Journal of Fish Diseases</i> , 2018 , 41, 1515-1528	2.6	15
408	Biotic and abiotic factors shape the microbiota of wild-caught populations of the arbovirus vector Culicoides imicola. <i>Insect Molecular Biology</i> , 2018 , 27, 847-861	3.4	11
407	Interactomics and tick vaccine development: new directions for the control of tick-borne diseases. <i>Expert Review of Proteomics</i> , 2018 , 15, 627-635	4.2	11
406	Sialotranscriptomic Response to Blood Feeding and Infection: Identification of Candidate Protective Antigens. <i>Frontiers in Cellular and Infection Microbiology</i> , 2018 , 8, 116	5.9	16
405	A reverse vaccinology approach to the identification and characterization of Ctenocephalides felis candidate protective antigens for the control of cat flea infestations. <i>Parasites and Vectors</i> , 2018 , 11, 43	4	13
404	Use of Graph Theory to Characterize Human and Arthropod Vector Cell Protein Response to Infection With. <i>Frontiers in Cellular and Infection Microbiology</i> , 2018 , 8, 265	5.9	16
403	Control of mycobacteriosis in zebrafish (Danio rerio) mucosally vaccinated with heat-inactivated Mycobacterium bovis. <i>Vaccine</i> , 2018 , 36, 4447-4453	4.1	13
402	Functional Evolution of Subolesin/Akirin. <i>Frontiers in Physiology</i> , 2018 , 9, 1612	4.6	25
401	Tick galactosyltransferases are involved in EGal synthesis and play a role during Anaplasma phagocytophilum infection and Ixodes scapularis tick vector development. <i>Scientific Reports</i> , 2018 , 8, 14224	4.9	42
400	Differential expression analysis for subolesin in Rhipicephalus microplus infected with Anaplasma marginale. <i>Experimental and Applied Acarology</i> , 2018 , 76, 229-241	2.1	2
399	Comparative proteomics identified immune response proteins involved in response to vaccination with heat-inactivated Mycobacterium bovis and mycobacterial challenge in cattle. <i>Veterinary Immunology and Immunopathology</i> , 2018 , 206, 54-64	2	5
398	Integrated metatranscriptomics and metaproteomics for the characterization of bacterial microbiota in unfed Ixodes ricinus. <i>Ticks and Tick-borne Diseases</i> , 2018 , 9, 1241-1251	3.6	26
397	Molecular evidence of the reservoir competence of water buffalo (Bubalus bubalis) for Anaplasma marginale in Cuba. <i>Veterinary Parasitology: Regional Studies and Reports</i> , 2018 , 13, 180-187	1.2	6
396	High throughput discovery and characterization of tick and pathogen vaccine protective antigens using vaccinomics with intelligent Big Data analytic techniques. <i>Expert Review of Vaccines</i> , 2018 , 17, 569	-576	15

395	Applying proteomics to tick vaccine development: where are we?. <i>Expert Review of Proteomics</i> , 2017 , 14, 211-221	4.2	15
394	Control of infestations by Ixodes ricinus tick larvae in rabbits vaccinated with aquaporin recombinant antigens. <i>Vaccine</i> , 2017 , 35, 1323-1328	4.1	27
393	Tick-borne pathogens induce differential expression of genes promoting cell survival and host resistance in Ixodes ricinus cells. <i>Parasites and Vectors</i> , 2017 , 10, 81	4	25
392	Infection-derived lipids elicit an immune deficiency circuit in arthropods. <i>Nature Communications</i> , 2017 , 8, 14401	17.4	50
391	A retrospective study of the characterization of Rickettsia species in ticks collected from humans. <i>Ticks and Tick-borne Diseases</i> , 2017 , 8, 610-614	3.6	18
390	Human to human transmission of arthropod-borne pathogens. Current Opinion in Virology, 2017, 22, 13-	· 2 /15	12
389	Salivary Prostaglandin E2: Role in Tick-Induced Allergy to Red Meat. <i>Trends in Parasitology</i> , 2017 , 33, 495-498	6.4	16
388	Effect of blood type on anti-EGal immunity and the incidence of infectious diseases. <i>Experimental and Molecular Medicine</i> , 2017 , 49, e301	12.8	48
387	Guidelines for the Direct Detection of Anaplasma spp. in Diagnosis and Epidemiological Studies. <i>Vector-Borne and Zoonotic Diseases</i> , 2017 , 17, 12-22	2.4	44
386	Proteomic characterisation of bovine and avian purified protein derivatives and identification of specific antigens for serodiagnosis of bovine tuberculosis. <i>Clinical Proteomics</i> , 2017 , 14, 36	5	28
385	Remodeling of tick cytoskeleton in response to infection with. <i>Frontiers in Bioscience - Landmark</i> , 2017 , 22, 1830-1844	2.8	6
384	The response of red deer to oral administration of heat-inactivated Mycobacterium bovis and challenge with a field strain. <i>Veterinary Microbiology</i> , 2017 , 208, 195-202	3.3	19
383	Functional characterization of candidate antigens of Hyalomma anatolicum and evaluation of its cross-protective efficacy against Rhipicephalus microplus. <i>Vaccine</i> , 2017 , 35, 5682-5692	4.1	14
382	Combination of RT-PCR and proteomics for the identification of Crimean-Congo hemorrhagic fever virus in ticks. <i>Heliyon</i> , 2017 , 3, e00353	3.6	9
381	Targeting a global health problem: Vaccine design and challenges for the control of tick-borne diseases. <i>Vaccine</i> , 2017 , 35, 5089-5094	4.1	42
380	Solute carriers affect Anopheles stephensi survival and Plasmodium berghei infection in the salivary glands. <i>Scientific Reports</i> , 2017 , 7, 6141	4.9	7
379	Prevalence of type I sensitization to alpha-gal in forest service employees and hunters: Is the blood type an overlooked risk factor in epidemiological studies of the HGal syndrome?. <i>Allergy: European Journal of Allergy and Clinical Immunology</i> , 2017 , 72, 2044-2047	9.3	11
378	Molecular survey of Rickettsial organisms in ectoparasites from a dog shelter in Northern Mexico. Veterinary Parasitology: Regional Studies and Reports, 2017, 10, 143-148	1.2	2

(2016-2017)

377	Heat Shock Proteins in Vector-pathogen Interactions: The Anaplasma phagocytophilum Model. <i>Heat Shock Proteins</i> , 2017 , 375-398	0.2	2
376	Reduction of Mosquito Survival in Mice Vaccinated with Glucose Transporter. <i>BioMed Research International</i> , 2017 , 2017, 3428186	3	4
375	Infection Subverts Carbohydrate Metabolic Pathways in the Tick Vector,. <i>Frontiers in Cellular and Infection Microbiology</i> , 2017 , 7, 23	5.9	36
374	Tick-Pathogen Ensembles: Do Molecular Interactions Lead Ecological Innovation?. <i>Frontiers in Cellular and Infection Microbiology</i> , 2017 , 7, 74	5.9	14
373	Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. <i>Frontiers in Cellular and Infection Microbiology</i> , 2017 , 7, 114	5.9	186
372	Comparative Proteomics Reveals Differences in Host-Pathogen Interaction between Infectious and Commensal Relationship with. <i>Frontiers in Cellular and Infection Microbiology</i> , 2017 , 7, 145	5.9	11
371	Functional Redundancy and Ecological Innovation Shape the Circulation of Tick-Transmitted Pathogens. <i>Frontiers in Cellular and Infection Microbiology</i> , 2017 , 7, 234	5.9	8
370	MSP4 and HSP70 Proteins Are Involved in Interactions with Host Cells during Pathogen Infection. <i>Frontiers in Cellular and Infection Microbiology</i> , 2017 , 7, 307	5.9	17
369	Vaccinomics Approach to the Identification of Candidate Protective Antigens for the Control of Tick Vector Infestations and Infection. <i>Frontiers in Cellular and Infection Microbiology</i> , 2017 , 7, 360	5.9	21
368	Tick Cells Control Infection by Increasing the Synthesis of Phosphoenolpyruvate from Tyrosine. <i>Frontiers in Cellular and Infection Microbiology</i> , 2017 , 7, 375	5.9	15
367	Immunity to EGal: The Opportunity for Malaria and Tuberculosis Control. <i>Frontiers in Immunology</i> , 2017 , 8, 1733	8.4	13
366	Tick-host conflict: immunoglobulin E antibodies to tick proteins in patients with anaphylaxis to tick bite. <i>Oncotarget</i> , 2017 , 8, 20630-20644	3.3	39
365	Species interactions in occurrence data for a community of tick-transmitted pathogens. <i>Scientific Data</i> , 2016 , 3, 160056	8.2	25
364	Tuberculosis, genetic diversity and fitness in the red deer, Cervus elaphus. <i>Infection, Genetics and Evolution</i> , 2016 , 43, 203-12	4.5	10
363	Oral administration of heat-inactivated Mycobacterium bovis reduces the response of farmed red deer to avian and bovine tuberculin. <i>Veterinary Immunology and Immunopathology</i> , 2016 , 172, 21-5	2	16
362	Strategies for new and improved vaccines against ticks and tick-borne diseases. <i>Parasite Immunology</i> , 2016 , 38, 754-769	2.2	79
361	Evidence of co-infection with Mycobacterium bovis and tick-borne pathogens in a naturally infected sheep flock. <i>Ticks and Tick-borne Diseases</i> , 2016 , 7, 384-9	3.6	3
360	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). <i>Autophagy</i> , 2016 , 12, 1-222	10.2	3838

359	Molecular identification and characterization of Anaplasma platys and Ehrlichia canis in dogs in Mexico. <i>Ticks and Tick-borne Diseases</i> , 2016 , 7, 276-83	3.6	32
358	Genomic insights into the Ixodes scapularis tick vector of Lyme disease. <i>Nature Communications</i> , 2016 , 7, 10507	17.4	303
357	Expression of Early Growth Response Gene-2 and Regulated Cytokines Correlates with Recovery from Guillain-Barr (Syndrome. <i>Journal of Immunology</i> , 2016 , 196, 1102-7	5.3	11
356	Complement component 3: a new paradigm in tuberculosis vaccine. <i>Expert Review of Vaccines</i> , 2016 , 15, 275-7	5.2	14
355	Anaplasma phagocytophilum Uses Common Strategies for Infection of Ticks and Vertebrate Hosts. <i>Trends in Microbiology</i> , 2016 , 24, 173-180	12.4	51
354	Molecular detection of vector-borne pathogens in wild and domestic carnivores and their ticks at the human-wildlife interface. <i>Ticks and Tick-borne Diseases</i> , 2016 , 7, 284-90	3.6	64
353	Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis. <i>PLoS Neglected Tropical Diseases</i> , 2016 , 10, e0004541	4.8	9
352	Increased Lytic Efficiency of Bovine Macrophages Trained with Killed Mycobacteria. <i>PLoS ONE</i> , 2016 , 11, e0165607	3.7	16
351	sp. nov., isolated from the tick. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2016 , 66, 1426-1430	2.2	54
350	Anaplasma phagocytophilum Manipulates Host Cell Apoptosis by Different Mechanisms to Establish Infection. <i>Veterinary Sciences</i> , 2016 , 3,	2.4	12
349	Tissue-Specific Signatures in the Transcriptional Response to Anaplasma phagocytophilum Infection of Ixodes scapularis and Ixodes ricinus Tick Cell Lines. <i>Frontiers in Cellular and Infection Microbiology</i> , 2016 , 6, 20	5.9	23
348	Tick Genome Assembled: New Opportunities for Research on Tick-Host-Pathogen Interactions. <i>Frontiers in Cellular and Infection Microbiology</i> , 2016 , 6, 103	5.9	27
347	The intracellular bacterium Anaplasma phagocytophilum selectively manipulates the levels of vertebrate host proteins in the tick vector Ixodes scapularis. <i>Parasites and Vectors</i> , 2016 , 9, 467	4	19
346	Tick-Host-Pathogen Interactions: Conflict and Cooperation. <i>PLoS Pathogens</i> , 2016 , 12, e1005488	7.6	57
345	Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis. <i>Epigenetics</i> , 2016 , 11, 303-19	5.7	46
344	A comparison of the performance of regression models of Amblyomma americanum (L.) (Ixodidae) using life cycle or landscape data from administrative divisions. <i>Ticks and Tick-borne Diseases</i> , 2016 , 7, 624-30	3.6	5
343	Research Priorities and Trends in Infections Shared with Wildlife. <i>Wildlife Research Monographs</i> , 2016 , 55-78	1.4	1
342	Control of Ixodes ricinus and Dermacentor reticulatus tick infestations in rabbits vaccinated with the Q38 Subolesin/Akirin chimera. <i>Vaccine</i> , 2016 , 34, 3010-3013	4.1	24

341	Vaccinomics Approach to Tick Vaccine Development. <i>Methods in Molecular Biology</i> , 2016 , 1404, 275-286	5 1.4	14
340	Species diversity and spatial distribution of ixodid ticks on small ruminants in Greece. <i>Parasitology Research</i> , 2016 , 115, 4673-4680	2.4	6
339	Identification and characterization of a novel tick-borne flavivirus subtype in goats (Capra hircus) in Spain. <i>Journal of General Virology</i> , 2015 , 96, 1676-81	4.9	13
338	Anaplasma 2015 , 2033-2042		5
337	Bacterial membranes enhance the immunogenicity and protective capacity of the surface exposed tick Subolesin-Anaplasma marginale MSP1a chimeric antigen. <i>Ticks and Tick-borne Diseases</i> , 2015 , 6, 820) - } ⁶	5
336	Infection of Ixodes spp. tick cells with different Anaplasma phagocytophilum isolates induces the inhibition of apoptotic cell death. <i>Ticks and Tick-borne Diseases</i> , 2015 , 6, 758-67	3.6	25
335	Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. <i>PLoS Genetics</i> , 2015 , 11, e1005120	6	88
334	Contributions to the morphology and phylogeny of the newly discovered bat tick species, Ixodes ariadnae in comparison with I. vespertilionis and I. simplex. <i>Parasites and Vectors</i> , 2015 , 8, 47	4	17
333	Molecular and immunological characterization of three strains of Anaplasma marginale grown in cultured tick cells. <i>Ticks and Tick-borne Diseases</i> , 2015 , 6, 522-9	3.6	7
332	Anaplasma marginale major surface protein 1a: a marker of strain diversity with implications for control of bovine anaplasmosis. <i>Ticks and Tick-borne Diseases</i> , 2015 , 6, 205-10	3.6	18
331	High degree of mitochondrial gene heterogeneity in the bat tick species Ixodes vespertilionis, I. ariadnae and I. simplex from Eurasia. <i>Parasites and Vectors</i> , 2015 , 8, 457	4	17
330	Tick vaccines: current status and future directions. <i>Expert Review of Vaccines</i> , 2015 , 14, 1367-76	5.2	75
329	Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells. <i>Molecular and Cellular Proteomics</i> , 2015 , 14, 315	4779	84
328	Flying ticks: anciently evolved associations that constitute a risk of infectious disease spread. <i>Parasites and Vectors</i> , 2015 , 8, 538	4	30
327	Artificial feeding of Rhipicephalus microplus female ticks with anti calreticulin serum do not influence tick and Babesia bigemina acquisition. <i>Ticks and Tick-borne Diseases</i> , 2015 , 6, 47-55	3.6	12
326	Regulation of the Immune Response to EGal and Vector-borne Diseases. <i>Trends in Parasitology</i> , 2015 , 31, 470-476	6.4	29
325	Gene expression changes in the salivary glands of Anopheles coluzzii elicited by Plasmodium berghei infection. <i>Parasites and Vectors</i> , 2015 , 8, 485	4	13
324	Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: transcriptomic and proteomic analysis. <i>Parasites and Vectors</i> , 2015 , 8, 599	4	48

323	Identification and Characterization of Anaplasma phagocytophilum Proteins Involved in Infection of the Tick Vector, Ixodes scapularis. <i>PLoS ONE</i> , 2015 , 10, e0137237	3.7	22
322	Interactions between tick and transmitted pathogens evolved to minimise competition through nested and coherent networks. <i>Scientific Reports</i> , 2015 , 5, 10361	4.9	47
321	Complete Genome Sequences of Field Isolates of Mycobacterium bovis and Mycobacterium caprae. <i>Genome Announcements</i> , 2015 , 3,		4
320	Complete Genome Sequence of Ehrlichia mineirensis, a Novel Organism Closely Related to Ehrlichia canis with a New Host Association. <i>Genome Announcements</i> , 2015 , 3,		10
319	Insights into the development of Ixodes scapularis: a resource for research on a medically important tick species. <i>Parasites and Vectors</i> , 2015 , 8, 592	4	13
318	Prospects for vaccination against the ticks of pets and the potential impact on pathogen transmission. <i>Veterinary Parasitology</i> , 2015 , 208, 26-9	2.8	11
317	Functional genomics of tick vectors challenged with the cattle parasite Babesia bigemina. <i>Methods in Molecular Biology</i> , 2015 , 1247, 475-89	1.4	3
316	Comparative Genomics of Field Isolates of Mycobacterium bovis and M. caprae Provides Evidence for Possible Correlates with Bacterial Viability and Virulence. <i>PLoS Neglected Tropical Diseases</i> , 2015 , 9, e0004232	4.8	19
315	The Impact of Climate Trends on a Tick Affecting Public Health: A Retrospective Modeling Approach for Hyalomma marginatum (Ixodidae). <i>PLoS ONE</i> , 2015 , 10, e0125760	3.7	32
314	Nuclease Tudor-SN Is Involved in Tick dsRNA-Mediated RNA Interference and Feeding but Not in Defense against Flaviviral or Anaplasma phagocytophilum Rickettsial Infection. <i>PLoS ONE</i> , 2015 , 10, e01	3 3 038	3 ¹⁸
313	The genus Anaplasma: new challenges after reclassification. <i>OIE Revue Scientifique Et Technique</i> , 2015 , 34, 577-86	2.5	49
312	Proteomics characterization of tick-host-pathogen interactions. <i>Methods in Molecular Biology</i> , 2015 , 1247, 513-27	1.4	7
311	Tick capillary feeding for the study of proteins involved in tick-pathogen interactions as potential antigens for the control of tick infestation and pathogen infection. <i>Parasites and Vectors</i> , 2014 , 7, 42	4	32
310	Control of tick infestations and pathogen prevalence in cattle and sheep farms vaccinated with the recombinant Subolesin-Major Surface Protein 1a chimeric antigen. <i>Parasites and Vectors</i> , 2014 , 7, 10	4	27
309	Cancer research meets tick vectors for infectious diseases. Lancet Infectious Diseases, The, 2014, 14, 916	5 -2 75.5	15
308	A global set of Fourier-transformed remotely sensed covariates for the description of abiotic niche in epidemiological studies of tick vector species. <i>Parasites and Vectors</i> , 2014 , 7, 302	4	28
307	Studies of Anaplasma phagocytophilum in sheep experimentally infected with the human NY-18 isolate: characterization of tick feeding sites. <i>Ticks and Tick-borne Diseases</i> , 2014 , 5, 744-52	3.6	5
306	Epidemiology and evolution of the genetic variability of Anaplasma marginale in South Africa. <i>Ticks and Tick-borne Diseases</i> , 2014 , 5, 624-31	3.6	30

305	Oral re-vaccination of Eurasian wild boar with Mycobacterium bovis BCG yields a strong protective response against challenge with a field strain. <i>BMC Veterinary Research</i> , 2014 , 10, 96	2.7	21
304	Low genetic diversity associated with low prevalence of Anaplasma marginale in water buffaloes in Maraj Island, Brazil. <i>Ticks and Tick-borne Diseases</i> , 2014 , 5, 801-4	3.6	16
303	Infection of water buffalo in Rio de Janeiro Brazil with Anaplasma marginale strains also reported in cattle. <i>Veterinary Parasitology</i> , 2014 , 205, 730-4	2.8	13
302	Subolesin: a candidate vaccine antigen for the control of cattle tick infestations in Indian situation. <i>Vaccine</i> , 2014 , 32, 3488-94	4.1	28
301	Identification and partial characterisation of new members of the Ixodes ricinus defensin family. <i>Gene</i> , 2014 , 540, 146-52	3.8	17
300	Effects of environmental change on zoonotic disease risk: an ecological primer. <i>Trends in Parasitology</i> , 2014 , 30, 205-14	6.4	148
299	Glutathione S-transferase affects permethrin detoxification in the brown dog tick, Rhipicephalus sanguineus. <i>Ticks and Tick-borne Diseases</i> , 2014 , 5, 225-33	3.6	19
298	Comparative proteomics for the characterization of the most relevant Amblyomma tick species as vectors of zoonotic pathogens worldwide. <i>Journal of Proteomics</i> , 2014 , 105, 204-16	3.9	15
297	The ecology of ticks and epidemiology of tick-borne viral diseases. <i>Antiviral Research</i> , 2014 , 108, 104-28	3 10.8	168
296	Use of Percoll gradients to purify Anaplasma marginale (Rickettsiales: Anaplasmataceae) from tick cell cultures. <i>Ticks and Tick-borne Diseases</i> , 2014 , 5, 511-5	3.6	7
295	The Wild Side of Disease Control at the Wildlife-Livestock-Human Interface: A Review. <i>Frontiers in Veterinary Science</i> , 2014 , 1, 27	3.1	93
294	Oral vaccination with heat inactivated Mycobacterium bovis activates the complement system to protect against tuberculosis. <i>PLoS ONE</i> , 2014 , 9, e98048	3.7	41
293	Modeling the impact of climate and landscape on the efficacy of white tailed deer vaccination for cattle tick control in northeastern Mexico. <i>PLoS ONE</i> , 2014 , 9, e102905	3.7	15
292	Mosquito Akirin as a potential antigen for malaria control. <i>Malaria Journal</i> , 2014 , 13, 470	3.6	15
291	The glycoprotein TRP36 of Ehrlichia sp. UFMG-EV and related cattle pathogen Ehrlichia sp. UFMT-BV evolved from a highly variable clade of E. canis under adaptive diversifying selection. <i>Parasites and Vectors</i> , 2014 , 7, 584	4	19
2 90	Tonsils of the soft palate do not mediate the response of pigs to oral vaccination with heat-inactivated Mycobacterium bovis. <i>Vaccine Journal</i> , 2014 , 21, 1128-36		11
289	Crossing the interspecies barrier: opening the door to zoonotic pathogens. <i>PLoS Pathogens</i> , 2014 , 10, e1004129	7.6	97
288	IrSPI, a tick serine protease inhibitor involved in tick feeding and Bartonella henselae infection. <i>PLoS Neglected Tropical Diseases</i> , 2014 , 8, e2993	4.8	36

287	Genomic resources notes accepted 1 April 2014 - 31 May 2014. <i>Molecular Ecology Resources</i> , 2014 , 14, 1095	8.4	19
286	Re-emergence of bovine piroplasmosis in Hungary: has the etiological role of Babesia divergens been taken over by B. major and Theileria buffeli?. <i>Parasites and Vectors</i> , 2014 , 7, 434	4	26
285	A systems biology approach to the characterization of stress response in Dermacentor reticulatus tick unfed larvae. <i>PLoS ONE</i> , 2014 , 9, e89564	3.7	33
284	Isolation and characterization of. <i>Veterinary Research</i> , 2014 , 45, 78	3.8	10
283	Iophenoxic acid as a bait marker for wild mammals: efficacy and safety considerations. <i>Mammal Review</i> , 2013 , 43, 156-166	5	9
282	Lesser protein degradation machinery correlates with higher BM86 tick vaccine efficacy in Rhipicephalus annulatus when compared to Rhipicephalus microplus. <i>Vaccine</i> , 2013 , 31, 4728-35	4.1	32
281	Hd86 mRNA expression profile in Hyalomma scupense life stages, could it contribute to explain anti-tick vaccine effect discrepancy between adult and immature instars?. <i>Veterinary Parasitology</i> , 2013 , 198, 258-63	2.8	5
280	Non-pet dogs as sentinels and potential synanthropic reservoirs of tick-borne and zoonotic bacteria. <i>Veterinary Microbiology</i> , 2013 , 167, 700-3	3.3	18
279	Subolesin/Akirin vaccines for the control of arthropod vectors and vectorborne pathogens. <i>Transboundary and Emerging Diseases</i> , 2013 , 60 Suppl 2, 172-8	4.2	46
278	Assessing the effects of variables and background selection on the capture of the tick climate niche. <i>International Journal of Health Geographics</i> , 2013 , 12, 43	3.5	20
277	A transversal study on antibodies against selected pathogens in dromedary camels in the Canary Islands, Spain. <i>Veterinary Microbiology</i> , 2013 , 167, 468-73	3.3	32
276	Rough virulent strain of Brucella ovis induces pro- and anti-inflammatory cytokines in reproductive tissues in experimentally infected rams. <i>Veterinary Microbiology</i> , 2013 , 161, 339-43	3.3	10
275	Control of multiple arthropod vector infestations with subolesin/akirin vaccines. <i>Vaccine</i> , 2013 , 31, 118	7 296	68
274	High prevalence of Hepatozoon-infection among shepherd dogs in a region considered to be free of Rhipicephalus sanguineus. <i>Veterinary Parasitology</i> , 2013 , 196, 189-93	2.8	39
273	Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection. <i>Vaccine</i> , 2013 , 31, 5889-96	4.1	61
272	Vaccinomics, the new road to tick vaccines. <i>Vaccine</i> , 2013 , 31, 5923-9	4.1	62
271	Factors driving the circulation and possible expansion of Crimean-Congo haemorrhagic fever virus in the western Palearctic. <i>Journal of Applied Microbiology</i> , 2013 , 114, 278-86	4.7	42
270	Immunization with recombinant subolesin does not reduce tick infection with tick-borne encephalitis virus nor protect mice against disease. <i>Vaccine</i> , 2013 , 31, 1582-9	4.1	13

(2012-2013)

269	Synanthropic birds associated with high prevalence of tick-borne rickettsiae and with the first detection of Rickettsia aeschlimannii in Hungary. <i>Vector-Borne and Zoonotic Diseases</i> , 2013 , 13, 77-83	2.4	33
268	Prevalence of tick-borne pathogens in adult Dermacentor spp. ticks from nine collection sites in France. <i>Vector-Borne and Zoonotic Diseases</i> , 2013 , 13, 226-36	2.4	78
267	Sequencing of modern Lepus VDJ genes shows that the usage of VHn genes has been retained in both Oryctolagus and Lepus that diverged 12 million years ago. <i>Immunogenetics</i> , 2013 , 65, 777-84	3.2	15
266	Spotted fever group rickettsiae in questing ticks, central Spain. <i>Emerging Infectious Diseases</i> , 2013 , 19, 1163-5	10.2	20
265	Usutu virus in migratory song thrushes, Spain. <i>Emerging Infectious Diseases</i> , 2013 , 19, 1173-5	10.2	34
264	Proteomics approach to the study of cattle tick adaptation to white tailed deer. <i>BioMed Research International</i> , 2013 , 2013, 319812	3	10
263	Reciprocal regulation of NF-kB (Relish) and Subolesin in the tick vector, Ixodes scapularis. <i>PLoS ONE</i> , 2013 , 8, e65915	3.7	31
262	Demonstration of transplacental transmission of a human isolate of Anaplasma phagocytophilum in an experimentally infected sheep. <i>Transboundary and Emerging Diseases</i> , 2013 , 60 Suppl 2, 93-6	4.2	17
261	Temporal trend of tuberculosis in wild ungulates from Mediterranean Spain. <i>Transboundary and Emerging Diseases</i> , 2013 , 60 Suppl 1, 92-103	4.2	72
260	Anaplasma phagocytophilum inhibits apoptosis and promotes cytoskeleton rearrangement for infection of tick cells. <i>Infection and Immunity</i> , 2013 , 81, 2415-25	3.7	52
259	Interaction of the tick immune system with transmitted pathogens. <i>Frontiers in Cellular and Infection Microbiology</i> , 2013 , 3, 26	5.9	152
258	Tick vaccines and the control of tick-borne pathogens. <i>Frontiers in Cellular and Infection Microbiology</i> , 2013 , 3, 30	5.9	63
257	Functional and immunological relevance of Anaplasma marginale major surface protein 1a sequence and structural analysis. <i>PLoS ONE</i> , 2013 , 8, e65243	3.7	41
256	Tuberculosis epidemiology in islands: insularity, hosts and trade. <i>PLoS ONE</i> , 2013 , 8, e71074	3.7	11
255	Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite, Babesia bigemina. <i>International Journal for Parasitology</i> , 2012 , 42, 187-95	4.3	59
254	Hd86, the Bm86 tick protein ortholog in Hyalomma scupense (syn. H. detritum): expression in Pichia pastoris and analysis of nucleotides and amino acids sequences variations prior to vaccination trials. <i>Veterinary Parasitology</i> , 2012 , 183, 215-23	2.8	13
253	Ecological preferences of exophilic and endophilic ticks (Acari: Ixodidae) parasitizing wild carnivores in the Iberian Peninsula. <i>Veterinary Parasitology</i> , 2012 , 184, 248-57	2.8	25
252	Molecular identification of tick-borne pathogens in Nigerian ticks. <i>Veterinary Parasitology</i> , 2012 , 187, 572-7	2.8	44

251	Comparative efficacy of rHaa86 and rBm86 against Hyalomma anatolicum anatolicum and Rhipicephalus (Boophilus) microplus. <i>Parasite Immunology</i> , 2012 , 34, 297-301	2.2	20
250	Development and validation of two PCR tests for the detection of and differentiation between Anaplasma ovis and Anaplasma marginale. <i>Ticks and Tick-borne Diseases</i> , 2012 , 3, 283-7	3.6	60
249	Identification of microorganisms in partially fed female horn flies, Haematobia irritans. <i>Parasitology Research</i> , 2012 , 111, 1391-5	2.4	9
248	Sheep experimentally infected with a human isolate of Anaplasma phagocytophilum serve as a host for infection of Ixodes scapularis ticks. <i>Ticks and Tick-borne Diseases</i> , 2012 , 3, 147-53	3.6	23
247	Characterization of the tick-pathogen interface by quantitative proteomics. <i>Ticks and Tick-borne Diseases</i> , 2012 , 3, 154-8	3.6	13
246	Efficacy of Hyalomma scupense (Hd86) antigen against Hyalomma excavatum and H. scupense tick infestations in cattle. <i>Vaccine</i> , 2012 , 30, 7084-9	4.1	12
245	Global gene expression analysis in skin biopsies of European red deer experimentally infected with bluetongue virus serotypes 1 and 8. <i>Veterinary Microbiology</i> , 2012 , 161, 26-35	3.3	3
244	Molecular characterization of Bm86 gene orthologs from Hyalomma excavatum, Hyalomma dromedarii and Hyalomma marginatum marginatum and comparison with a vaccine candidate from Hyalomma scupense. <i>Veterinary Parasitology</i> , 2012 , 190, 230-40	2.8	11
243	Effects of culling Eurasian wild boar on the prevalence of Mycobacterium bovis and Aujeszky's disease virus. <i>Preventive Veterinary Medicine</i> , 2012 , 107, 214-21	3.1	66
242	Fatal bovine anaplasmosis in a herd with new genotypes of Anaplasma marginale, Anaplasma ovis and concurrent haemoplasmosis. <i>Research in Veterinary Science</i> , 2012 , 92, 30-5	2.5	28
241	Vaccination with BM86, subolesin and akirin protective antigens for the control of tick infestations in white tailed deer and red deer. <i>Vaccine</i> , 2012 , 30, 273-9	4.1	53
240	Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens. <i>Vaccine</i> , 2012 , 30, 265-72	4.1	47
239	Efficacy of Rhipicephalus (Boophilus) microplus Bm86 against Hyalomma dromedarii and Amblyomma cajennense tick infestations in camels and cattle. <i>Vaccine</i> , 2012 , 30, 3453-8	4.1	27
238	Natural Bagaza virus infection in game birds in southern Spain. Veterinary Research, 2012, 43, 65	3.8	24
237	Gene expression profile suggests that pigs (Sus scrofa) are susceptible to Anaplasma phagocytophilum but control infection. <i>Parasites and Vectors</i> , 2012 , 5, 181	4	29
236	New species of Ehrlichia isolated from Rhipicephalus (Boophilus) microplus shows an ortholog of the E. canis major immunogenic glycoprotein gp36 with a new sequence of tandem repeats. <i>Parasites and Vectors</i> , 2012 , 5, 291	4	43
235	Production of recombinant Aedes albopictus akirin in Pichia pastoris using an aqueous two-phase semicontinuous fermentation process. <i>Biochemical Engineering Journal</i> , 2012 , 68, 114-119	4.2	7
234	Reinstatement of Rhipicephalus (Boophilus) australis (Acari: Ixodidae) with redescription of the adult and larval stages. <i>Journal of Medical Entomology</i> , 2012 , 49, 794-802	2.2	83

233	Rickettsia conorii Indian tick typhus strain and R. slovaca in humans, Sicily. <i>Emerging Infectious Diseases</i> , 2012 , 18, 1008-10	10.2	18
232	Zoonotic pathogens among white-tailed deer, northern Mexico, 2004-2009. <i>Emerging Infectious Diseases</i> , 2012 , 18, 1372-4	10.2	23
231	Wild Boars as Hosts of Human-Pathogenic Anaplasma phagocytophilum Variants. <i>Emerging Infectious Diseases</i> , 2012 , 18, 2094-5	10.2	13
230	Expression of heat shock proteins and subolesin affects stress responses, Anaplasma phagocytophilum infection and questing behaviour in the tick, Ixodes scapularis. <i>Medical and Veterinary Entomology</i> , 2012 , 26, 92-102	2.4	52
229	Factors driving the abundance of ixodes ricinus ticks and the prevalence of zoonotic I. ricinus-borne pathogens in natural foci. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 2669-76	4.8	58
228	Progress in Oral Vaccination against Tuberculosis in Its Main Wildlife Reservoir in Iberia, the Eurasian Wild Boar. <i>Veterinary Medicine International</i> , 2012 , 2012, 978501	1.5	36
227	Impact of climate trends on tick-borne pathogen transmission. Frontiers in Physiology, 2012, 3, 64	4.6	120
226	Transcriptomics Data Integration Reveals Jak-STAT as a Common Pathway Affected by Pathogenic Intracellular Bacteria in Natural Reservoir Hosts. <i>Journal of Proteomics and Bioinformatics</i> , 2012 , 05,	2.1	12
225	Host expression of methylmalonyl-CoA mutase and tuberculosis: a missing link?. <i>Medical Hypotheses</i> , 2011 , 76, 361-4	3.8	7
224	Control of Rhipicephalus (Boophilus) microplus infestations by the combination of subolesin vaccination and tick autocidal control after subolesin gene knockdown in ticks fed on cattle. <i>Vaccine</i> , 2011 , 29, 2248-54	4.1	54
223	Targeting the tick protective antigen subolesin reduces vector infestations and pathogen infection by Anaplasma marginale and Babesia bigemina. <i>Vaccine</i> , 2011 , 29, 8575-9	4.1	62
222	Protection against tuberculosis in Eurasian wild boar vaccinated with heat-inactivated Mycobacterium bovis. <i>PLoS ONE</i> , 2011 , 6, e24905	3.7	90
221	RNA interference in ticks. Journal of Visualized Experiments, 2011,	1.6	16
220	Acceptance and palatability for domestic and wildlife hosts of baits designed to deliver a tuberculosis vaccine to wild boar piglets. <i>Preventive Veterinary Medicine</i> , 2011 , 98, 198-203	3.1	19
219	Progress in the control of bovine tuberculosis in Spanish wildlife. <i>Veterinary Microbiology</i> , 2011 , 151, 170-8	3.3	85
218	Prevalence and genetic diversity of Babesia and Anaplasma species in cattle in Sudan. <i>Veterinary Parasitology</i> , 2011 , 181, 146-52	2.8	31
217	Targeting arthropod subolesin/akirin for the development of a universal vaccine for control of vector infestations and pathogen transmission. <i>Veterinary Parasitology</i> , 2011 , 181, 17-22	2.8	88
216	Spatio-temporal trends of Iberian wild boar contact with Mycobacterium tuberculosis complex detected by ELISA. <i>EcoHealth</i> , 2011 , 8, 478-84	3.1	25

215	Specificity and success of oral-bait delivery to Eurasian wild boar in Mediterranean woodland habitats. <i>European Journal of Wildlife Research</i> , 2011 , 57, 749-757	2	24
214	Six recommendations for improving monitoring of diseases shared with wildlife: examples regarding mycobacterial infections in Spain. <i>European Journal of Wildlife Research</i> , 2011 , 57, 697-706	2	36
213	Functional genomics of the horn fly, Haematobia irritans (Linnaeus, 1758). BMC Genomics, 2011 , 12, 105	5 4.5	25
212	Fine-tuning the space, time, and host distribution of mycobacteria in wildlife. <i>BMC Microbiology</i> , 2011 , 11, 27	4.5	44
211	First molecular evidence of Anaplasma ovis and Rickettsia spp. in keds (Diptera: Hippoboscidae) of sheep and wild ruminants. <i>Vector-Borne and Zoonotic Diseases</i> , 2011 , 11, 1319-21	2.4	56
210	Serologic tests for detecting antibodies against Mycobacterium bovis and Mycobacterium avium subspecies paratuberculosis in Eurasian wild boar (Sus scrofa scrofa). <i>Journal of Veterinary Diagnostic Investigation</i> , 2011 , 23, 77-83	1.5	81
209	Expression of Heat Shock and Other Stress Response Proteins in Ticks and Cultured Tick Cells in Response to Anaplasma spp. Infection and Heat Shock. <i>International Journal of Proteomics</i> , 2010 , 2010, 657261		29
208	Increasing contact with hepatitis E virus in red deer, Spain. Emerging Infectious Diseases, 2010, 16, 1994	-6 10.2	36
207	One Health approach to identify research needs in bovine and human babesioses: workshop report. <i>Parasites and Vectors</i> , 2010 , 3, 36	4	52
206	Identification of protective antigens by RNA interference for control of the lone star tick, Amblyomma americanum. <i>Vaccine</i> , 2010 , 28, 1786-95	4.1	32
205	Characterization of ferritin 2 for the control of tick infestations. <i>Vaccine</i> , 2010 , 28, 2993-8	4.1	89
204	Mapping protective epitopes in the tick and mosquito subolesin ortholog proteins. <i>Vaccine</i> , 2010 , 28, 5398-406	4.1	33
203	Characterization of Aedes albopictus akirin for the control of mosquito and sand fly infestations. <i>Vaccine</i> , 2010 , 29, 77-82	4.1	33
202	Gene expression changes in spleens of the wildlife reservoir species, Eurasian wild boar (Sus scrofa), naturally infected with Brucella suis biovar 2. <i>Journal of Genetics and Genomics</i> , 2010 , 37, 725-3	6 ⁴	8
201	Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations. <i>Parasitology Research</i> , 2010 , 106, 471-9	2.4	85
200	Characterization of Anaplasma phagocytophilum and A. ovis infection in a naturally infected sheep flock with poor health condition. <i>Tropical Animal Health and Production</i> , 2010 , 42, 1327-31	1.7	40
199	Protection in the absence of exclusion between two Brazilian isolates of Anaplasma marginale in experimentally infected calves. <i>Veterinary Journal</i> , 2010 , 186, 374-8	2.5	18
198	Differential expression of genes in salivary glands of male Rhipicephalus (Boophilus)microplus in response to infection with Anaplasma marginale. <i>BMC Genomics</i> , 2010 , 11, 186	4.5	49

197	Subolesin expression in response to pathogen infection in ticks. <i>BMC Immunology</i> , 2010 , 11, 7	3.7	45
196	Application of highly sensitive saturation labeling to the analysis of differential protein expression in infected ticks from limited samples. <i>Proteome Science</i> , 2010 , 8, 43	2.6	26
195	Characterization of pathogen-specific expression of host immune response genes in Anaplasma and Mycobacterium species infected ruminants. <i>Comparative Immunology, Microbiology and Infectious Diseases</i> , 2010 , 33, e133-42	2.6	6
194	Experimental infection of Eurasian wild boar with Mycobacterium avium subsp. avium. <i>Veterinary Microbiology</i> , 2010 , 144, 240-5	3.3	12
193	Prevalence of tick-borne pathogens in ticks in Sicily. <i>Transboundary and Emerging Diseases</i> , 2010 , 57, 46-8	4.2	19
192	Humoral immune response of dairy cattle immunized with rBm95 (KU-VAC1) derived from Thai Rhipicephalus microplus. <i>Transboundary and Emerging Diseases</i> , 2010 , 57, 91-5	4.2	4
191	Bioprocess design and economics of recombinant BM86/BM95 antigen production for anti-tick vaccines. <i>Biochemical Engineering Journal</i> , 2010 , 52, 79-90	4.2	12
190	Analysis by LC/ESI-MS of iophenoxic acid derivatives and evaluation as markers of oral baits to deliver pharmaceuticals to wildlife. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2010 , 878, 1997-2002	3.2	10
189	The natural history of Anaplasma marginale. Veterinary Parasitology, 2010, 167, 95-107	2.8	295
188	Functional genomics and evolution of tick-Anaplasma interactions and vaccine development. <i>Veterinary Parasitology</i> , 2010 , 167, 175-86	2.8	40
187	Survey on blood-sucking lice (Phthiraptera: Anoplura) of ruminants and pigs with molecular detection of Anaplasma and Rickettsia spp. <i>Veterinary Parasitology</i> , 2010 , 174, 355-8	2.8	39
186	Spatial distribution and risk factors of Brucellosis in Iberian wild ungulates. <i>BMC Infectious Diseases</i> , 2010 , 10, 46	4	96
185	Inoculation of white-tailed deer (Odocoileus virginianus) with Ap-V1 Or NY-18 strains of Anaplasma phagocytophilum and microscopic demonstration of Ap-V1 In Ixodes scapularis adults that acquired infection from deer as nymphs. <i>Vector-Borne and Zoonotic Diseases</i> , 2009 , 9, 565-8	2.4	24
184	Anaplasma phagocytophilum and Anaplasma marginale elicit different gene expression responses in cultured tick cells. <i>Comparative and Functional Genomics</i> , 2009 , 705034		25
183	Rickettsia massiliae in the Canary Islands. <i>Emerging Infectious Diseases</i> , 2009 , 15, 1869-70	10.2	22
182	Disease threats to the endangered Iberian lynx (Lynx pardinus). Veterinary Journal, 2009, 182, 114-24	2.5	93
181	Allopatric speciation in ticks: genetic and reproductive divergence between geographic strains of Rhipicephalus (Boophilus) microplus. <i>BMC Evolutionary Biology</i> , 2009 , 9, 46	3	66
180	Experimental transmission of field Anaplasma marginale and the A. centrale vaccine strain by Hyalomma excavatum, Rhipicephalus sanguineus and Rhipicephalus (Boophilus) annulatus ticks. <i>Veterinary Microbiology</i> , 2009 , 134, 254-60	3.3	29

179	Expression of immunoregulatory genes in peripheral blood mononuclear cells of European wild boar immunized with BCG. <i>Veterinary Microbiology</i> , 2009 , 134, 334-9	3.3	23
178	Conservation and immunogenicity of the mosquito ortholog of the tick-protective antigen, subolesin. <i>Parasitology Research</i> , 2009 , 105, 97-111	2.4	55
177	The impact of RNA interference of the subolesin and voraxin genes in male Amblyomma hebraeum (Acari: Ixodidae) on female engorgement and oviposition. <i>Experimental and Applied Acarology</i> , 2009 , 47, 71-86	2.1	16
176	Silencing of genes involved in Anaplasma marginale-tick interactions affects the pathogen developmental cycle in Dermacentor variabilis. <i>BMC Developmental Biology</i> , 2009 , 9, 42	3.1	54
175	Vaccination with recombinant Boophilus annulatus Bm86 ortholog protein, Ba86, protects cattle against B. annulatus and B. microplus infestations. <i>BMC Biotechnology</i> , 2009 , 9, 29	3.5	79
174	Phylogeographic analysis reveals association of tick-borne pathogen, Anaplasma marginale, MSP1a sequences with ecological traits affecting tick vector performance. <i>BMC Biology</i> , 2009 , 7, 57	7.3	36
173	Cloning, expression and immunoprotective efficacy of rHaa86, the homologue of the Bm86 tick vaccine antigen, from Hyalomma anatolicum anatolicum. <i>Parasite Immunology</i> , 2009 , 31, 111-22	2.2	30
172	Prevalence of Anaplasma species and habitat suitability for ticks in Sicily. <i>Clinical Microbiology and Infection</i> , 2009 , 15 Suppl 2, 57-8	9.5	2
171	Reduced major histocompatibility complex class II polymorphism in a hunter-managed isolated Iberian red deer population. <i>Journal of Zoology</i> , 2009 , 277, 157-170	2	11
170	Propagation of a Brazilian isolate of Anaplasma marginale with appendage in a tick cell line (BME26) derived from Rhipicephalus (Boophilus) microplus. <i>Veterinary Parasitology</i> , 2009 , 161, 150-3	2.8	15
169	Genetic diversity of Anaplasma marginale in Argentina. Veterinary Parasitology, 2009, 162, 176-80	2.8	36
168	Impact of major histocompatibility complex class II polymorphisms on Iberian red deer parasitism and life history traits. <i>Infection, Genetics and Evolution</i> , 2009 , 9, 1232-9	4.5	16
167	Extractive bioconversion to produce the Aedes albopictus akirin in an aqueous two-phase system supporting Pichia pastoris growth and protein secretion. <i>Biochemical Engineering Journal</i> , 2009 , 46, 105	5- 11 4	19
166	Tick subolesin is an ortholog of the akirins described in insects and vertebrates. <i>Developmental and Comparative Immunology</i> , 2009 , 33, 612-7	3.2	74
165	Response to the commentary of D. Macqueen on: Galindo RC, Doncel-Plez E, Zivkovic Z, Naranjo V, Gortazar C, Mangold AJ, et al. Tick subolesin is an ortholog of the akirins described in insects and vertebrates [Dev. Comp. Immunol. 33 (2009) 612 17]. Developmental and Comparative	3.2	13
164	Immunology, 2009, 33, 878-879 Evaluation of baits for oral vaccination of European wild boar piglets. Research in Veterinary Science, 2009, 86, 388-93	2.5	42
163	Characterization of possible correlates of protective response against Brucella ovis infection in rams immunized with the B. melitensis Rev 1 vaccine. <i>Vaccine</i> , 2009 , 27, 3039-44	4.1	3
162	Immunisation with recombinant proteins subolesin and Bm86 for the control of Dermanyssus gallinae in poultry. <i>Vaccine</i> , 2009 , 27, 4056-63	4.1	52

(2008-2009)

161	First data on Eurasian wild boar response to oral immunization with BCG and challenge with a Mycobacterium bovis field strain. <i>Vaccine</i> , 2009 , 27, 6662-8	4.1	58
160	Protective efficacy of bacterial membranes containing surface-exposed BM95 antigenic peptides for the control of cattle tick infestations. <i>Vaccine</i> , 2009 , 27, 7244-8	4.1	20
159	Differential expression of inflammatory and immune response genes in rams experimentally infected with a rough virulent strain of Brucella ovis. <i>Veterinary Immunology and Immunopathology</i> , 2009 , 127, 295-303	2	20
158	Gene expression profiles of European wild boar naturally infected with Mycobacterium bovis. <i>Veterinary Immunology and Immunopathology</i> , 2009 , 129, 119-25	2	27
157	Recent advances in the development of immunoadhesins for immune therapy and as anti-infective agents. <i>Recent Patents on Anti-infective Drug Discovery</i> , 2009 , 4, 183-9	1.6	6
156	Selective piglet feeders improve age-related bait specificity and uptake rate in overabundant Eurasian wild boar populations. <i>Wildlife Research</i> , 2009 , 36, 203	1.8	23
155	Scientific review on Tuberculosis in wildlife in the EU. EFSA Supporting Publications, 2009, 6, 12E	1.1	2
154	Genetic basis and impact of tick acaricide resistance. Frontiers in Bioscience - Landmark, 2009, 14, 2657-	65 .8	55
153	Influence of methylmalonyl-CoA mutase alleles on resistance to bovine tuberculosis in the European wild boar (Sus scrofa). <i>Animal Genetics</i> , 2008 , 39, 316-20	2.5	16
152	Prevalence of Coxiella burnetti infection in wild and farmed ungulates. <i>Veterinary Microbiology</i> , 2008 , 126, 282-6	3.3	46
151	Evidence of the role of European wild boar as a reservoir of Mycobacterium tuberculosis complex. <i>Veterinary Microbiology</i> , 2008 , 127, 1-9	3.3	238
150	West Nile virus in the endangered Spanish imperial eagle. Veterinary Microbiology, 2008, 129, 171-8	3.3	43
149	Evidence of the role of tick subolesin in gene expression. <i>BMC Genomics</i> , 2008 , 9, 372	4.5	66
148	Evidence of Anaplasma infections in European roe deer (Capreolus capreolus) from southern Spain. <i>Research in Veterinary Science</i> , 2008 , 84, 382-6	2.5	58
147	Molecular cloning and characterisation of a homologue of the alpha inhibitor of NF-kappaB in the griffon vulture (Gyps fulvus). <i>Veterinary Immunology and Immunopathology</i> , 2008 , 122, 318-25	2	3
146	Differential expression of inflammatory and immune response genes in sheep infected with Anaplasma phagocytophilum. <i>Veterinary Immunology and Immunopathology</i> , 2008 , 126, 27-34	2	17
145	Differential expression of inflammatory and immune response genes in mesenteric lymph nodes of Iberian red deer (Cervus elaphus hispanicus) naturally infected with Mycobacterium bovis. <i>Developmental and Comparative Immunology</i> , 2008 , 32, 85-91	3.2	24
144	Anaplasma marginale major surface protein 1a directs cell surface display of tick BM95 immunogenic peptides on Escherichia coli. <i>Journal of Biotechnology</i> , 2008 , 135, 326-32	3.7	14

143	Prevalence and genotypes of Anaplasma species and habitat suitability for ticks in a Mediterranean ecosystem. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 7578-84	4.8	49
142	Expression of perilipin in human promyelocytic cells in response to Anaplasma phagocytophilum infection results in modified lipid metabolism. <i>Journal of Medical Microbiology</i> , 2008 , 57, 159-163	3.2	16
141	Targeting the tick-pathogen interface for novel control strategies. <i>Frontiers in Bioscience - Landmark</i> , 2008 , 13, 6947-56	2.8	39
140	Advances toward understanding the molecular biology of the Anaplasma-tick interface. <i>Frontiers in Bioscience - Landmark</i> , 2008 , 13, 7032-45	2.8	26
139	Overview: Ticks as vectors of pathogens that cause disease in humans and animals. <i>Frontiers in Bioscience - Landmark</i> , 2008 , 13, 6938-46	2.8	449
138	Silencing expression of the defensin, varisin, in male Dermacentor variabilis by RNA interference results in reduced Anaplasma marginale infections. <i>Experimental and Applied Acarology</i> , 2008 , 46, 17-28	2.1	25
137	Expression of recombinant Rhipicephalus (Boophilus) microplus, R. annulatus and R. decoloratus Bm86 orthologs as secreted proteins in Pichia pastoris. <i>BMC Biotechnology</i> , 2008 , 8, 14	3.5	32
136	Development and validation of an enzyme-linked immunosorbent assay for antibodies against Mycobacterium bovis in European wild boar. <i>BMC Veterinary Research</i> , 2008 , 4, 43	2.7	37
135	Molecular identification of Anaplasma marginale and rickettsial endosymbionts in blood-sucking flies (Diptera: Tabanidae, Muscidae) and hard ticks (Acari: Ixodidae). <i>Veterinary Parasitology</i> , 2008 , 154, 354-9	2.8	61
134	Genetic diversity of Anaplasma marginale strains from an outbreak of bovine anaplasmosis in an endemic area. <i>Veterinary Parasitology</i> , 2008 , 158, 103-9	2.8	27
133	Differential expression of the tick protective antigen subolesin in anaplasma marginale- and A. phagocytophilum-infected host cells. <i>Annals of the New York Academy of Sciences</i> , 2008 , 1149, 27-35	6.5	25
132	Defining the role of subolesin in tick cell culture by use of RNA interference. <i>Annals of the New York Academy of Sciences</i> , 2008 , 1149, 41-4	6.5	5
131	Characterization of anaplasma infections in Sicily, Italy. <i>Annals of the New York Academy of Sciences</i> , 2008 , 1149, 90-3	6.5	49
130	Bovine tuberculosis in Do l ina Biosphere Reserve: the role of wild ungulates as disease reservoirs in the last Iberian lynx strongholds. <i>PLoS ONE</i> , 2008 , 3, e2776	3.7	115
129	Evidence of the importance of host habitat use in predicting the dilution effect of wild boar for deer exposure to Anaplasma spp. <i>PLoS ONE</i> , 2008 , 3, e2999	3.7	19
128	Silencing expression of the defensin, varisin, in male Dermacentor variabilis by RNA interference results in reduced Anaplasma marginale infections 2008 , 17-28		
127	Serologic and molecular characterization of tickborne pathogens in lions (Panthera leo) from the Fasano Safari Park, Italy. <i>Journal of Zoo and Wildlife Medicine</i> , 2007 , 38, 591-3	0.9	12
126	A ten-year review of commercial vaccine performance for control of tick infestations on cattle. <i>Animal Health Research Reviews</i> , 2007 , 8, 23-8	2.1	252

(2007-2007)

125	Sp110 transcription is induced and required by Anaplasma phagocytophilum for infection of human promyelocytic cells. <i>BMC Infectious Diseases</i> , 2007 , 7, 110	4	8	
124	Experimental transmission of Anaplasma marginale by male Dermacentor reticulatus. <i>BMC Veterinary Research</i> , 2007 , 3, 32	2.7	26	
123	Proteomic and transcriptomic analyses of differential stress/inflammatory responses in mandibular lymph nodes and oropharyngeal tonsils of European wild boars naturally infected with Mycobacterium bovis. <i>Proteomics</i> , 2007 , 7, 220-31	4.8	46	
122	Gene silencing of the tick protective antigens, Bm86, Bm91 and subolesin, in the one-host tick Boophilus microplus by RNA interference. <i>International Journal for Parasitology</i> , 2007 , 37, 653-62	4.3	82	
121	Sequence analysis of the msp4 gene of Anaplasma ovis strains. Veterinary Microbiology, 2007, 119, 375	-83 .3	125	
120	Analysis of world strains of Anaplasma marginale using major surface protein 1a repeat sequences. <i>Veterinary Microbiology</i> , 2007 , 119, 382-90	3.3	87	
119	First serological and molecular evidence on the endemicity of Anaplasma ovis and A. marginale in Hungary. <i>Veterinary Microbiology</i> , 2007 , 122, 316-22	3.3	63	
118	RNA interference for the study and genetic manipulation of ticks. <i>Trends in Parasitology</i> , 2007 , 23, 427	-3 8 .4	118	
117	Lesions associated with Mycobacterium tuberculosis complex infection in the European wild boar. <i>Tuberculosis</i> , 2007 , 87, 360-7	2.6	106	
116	Tick vaccines and the transmission of tick-borne pathogens. <i>Veterinary Research Communications</i> , 2007 , 31 Suppl 1, 85-90	2.9	34	
115	Targeting the tick/pathogen interface for developing new anaplasmosis vaccine strategies. <i>Veterinary Research Communications</i> , 2007 , 31 Suppl 1, 91-6	2.9	5	
114	Transovarial silencing of the subolesin gene in three-host ixodid tick species after injection of replete females with subolesin dsRNA. <i>Parasitology Research</i> , 2007 , 100, 1411-5	2.4	46	
113	Experimental infection of C3H/HeJ mice with the NY18 isolate of Anaplasma phagocytophilum. <i>Veterinary Pathology</i> , 2007 , 44, 64-73	2.8	14	
112	Comparative genomics and proteomics to study tissue-specific response and function in natural Mycobacterium bovis infections. <i>Animal Health Research Reviews</i> , 2007 , 8, 81-8	2.1	19	
111	Recent developments in oral bait vaccines for wildlife. <i>Recent Patents on Drug Delivery and Formulation</i> , 2007 , 1, 230-5	1.4	14	
110	Functional genomic studies of tick cells in response to infection with the cattle pathogen, Anaplasma marginale. <i>Genomics</i> , 2007 , 90, 712-22	4.3	75	
109	Molecular cloning and characterisation of the griffon vulture (Gyps fulvus) toll-like receptor 1. <i>Developmental and Comparative Immunology</i> , 2007 , 31, 511-9	3.2	10	
108	Observed prevalence of tick-borne pathogens in domestic animals in Sicily, Italy during 2003-2005. <i>Zoonoses and Public Health</i> , 2007 , 54, 8-15	2.9	73	

107	Prevalence and genetic diversity of Anaplasma marginale strains in cattle in South Africa. <i>Zoonoses and Public Health</i> , 2007 , 54, 23-30	2.9	34
106	Characterization of selected genes upregulated in non-tuberculous European wild boar as possible correlates of resistance to Mycobacterium bovis infection. <i>Veterinary Microbiology</i> , 2006 , 116, 224-31	3.3	27
105	Tick control: further thoughts on a research agenda. <i>Trends in Parasitology</i> , 2006 , 22, 550-1	6.4	57
104	Genetic characterization of Anaplasma ovis strains from bighorn sheep in Montana. <i>Journal of Wildlife Diseases</i> , 2006 , 42, 381-5	1.3	23
103	Autocidal control of ticks by silencing of a single gene by RNA interference. <i>Biochemical and Biophysical Research Communications</i> , 2006 , 344, 332-8	3.4	52
102	The tick protective antigen, 4D8, is a conserved protein involved in modulation of tick blood ingestion and reproduction. <i>Vaccine</i> , 2006 , 24, 4082-95	4.1	112
101	Molecular characterization of Anaplasma platys strains from dogs in Sicily, Italy. <i>BMC Veterinary Research</i> , 2006 , 2, 24	2.7	43
100	Genes differentially expressed in oropharyngeal tonsils and mandibular lymph nodes of tuberculous and nontuberculous European wild boars naturally exposed to Mycobacterium bovis. <i>FEMS Immunology and Medical Microbiology</i> , 2006 , 46, 298-312		42
99	Strategies for development of vaccines for control of ixodid tick species. <i>Parasite Immunology</i> , 2006 , 28, 275-83	2.2	158
98	The importance of protein glycosylation in development of novel tick vaccine strategies. <i>Parasite Immunology</i> , 2006 , 28, 687-8	2.2	16
97	Ixodid ticks parasitizing Iberian red deer (Cervus elaphus hispanicus) and European wild boar (Sus scrofa) from Spain: geographical and temporal distribution. <i>Veterinary Parasitology</i> , 2006 , 140, 133-42	2.8	89
96	Molecular epidemiology of human and bovine anaplasmosis in southern Europe. <i>Annals of the New York Academy of Sciences</i> , 2006 , 1078, 95-9	6.5	28
95	Anaplasmosis: focusing on host-vector-pathogen interactions for vaccine development. <i>Annals of the New York Academy of Sciences</i> , 2006 , 1078, 416-23	6.5	10
94	Control of ticks of ruminants, with special emphasis on livestock farming systems in India: present and future possibilities for integrated controla review. <i>Experimental and Applied Acarology</i> , 2006 , 40, 49-66	2.1	80
93	Synergistic effect of silencing the expression of tick protective antigens 4D8 and Rs86 in Rhipicephalus sanguineus by RNA interference. <i>Parasitology Research</i> , 2006 , 99, 108-13	2.4	43
92	Reduction of tick infections with Anaplasma marginale and A. phagocytophilum by targeting the tick protective antigen subolesin. <i>Parasitology Research</i> , 2006 , 100, 85-91	2.4	89
91	Analysis of serum biochemical parameters in relation to Mycobacterium bovis infection of European wild boars (Sus scrofa) in Spain. <i>European Journal of Wildlife Research</i> , 2006 , 52, 301-304	2	16
90	Potential vertebrate reservoir hosts and invertebrate vectors of Anaplasma marginale and A. phagocytophilum in central Spain. <i>Vector-Borne and Zoonotic Diseases</i> , 2005 , 5, 390-401	2.4	103

(2004-2005)

Characterization of three Ixodes scapularis cDNAs protective against tick infestations. <i>Vaccine</i> , 2005 , 23, 4403-16	4.1	71
Vaccination with recombinant tick antigens for the control of Ixodes scapularis adult infestations. <i>Vaccine</i> , 2005 , 23, 5294-8	4.1	60
Genetic diversity of anaplasma species major surface proteins and implications for anaplasmosis serodiagnosis and vaccine development. <i>Animal Health Research Reviews</i> , 2005 , 6, 75-89	2.1	104
Gene expression profiling of human promyelocytic cells in response to infection with Anaplasma phagocytophilum. <i>Cellular Microbiology</i> , 2005 , 7, 549-59	3.9	62
Capillary tube feeding system for studying tick-pathogen interactions of Dermacentor variabilis (Acari: Ixodidae) and Anaplasma marginale (Rickettsiales: Anaplasmataceae). <i>Journal of Medical Entomology</i> , 2005 , 42, 864-74	2.2	21
Serologic and molecular characterization of Anaplasma species infection in farm animals and ticks from Sicily. <i>Veterinary Parasitology</i> , 2005 , 133, 357-62	2.8	89
Genetic diversity of Anaplasma marginale strains from cattle farms in the province of Palermo, Sicily. <i>Zoonoses and Public Health</i> , 2005 , 52, 226-9		26
Characterization of genetic diversity in Dermacentor andersoni (Acari: Ixodidae) with body size and weight polymorphism. <i>Experimental Parasitology</i> , 2005 , 109, 16-26	2.1	16
RNA interference screening in ticks for identification of protective antigens. <i>Parasitology Research</i> , 2005 , 96, 137-41	2.4	65
Infection with Anaplasma phagocytophilum in a seronegative patient in Sicily, Italy: case report. <i>Annals of Clinical Microbiology and Antimicrobials</i> , 2005 , 4, 15	6.2	28
Sequence analysis of the msp4 gene of Anaplasma phagocytophilum strains. <i>Journal of Clinical Microbiology</i> , 2005 , 43, 1309-17	9.7	160
Capillary Tube Feeding System for Studying TickPathogen Interactions of Dermacentor variabilis (Acari: Ixodidae) and Anaplasma marginale (Rickettsiales: Anaplasmataceae). <i>Journal of Medical Entomology</i> , 2005 , 42, 864-874	2.2	20
bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in its natural tick vector. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 6972-7	11.5	88
Serologic cross-reactivity between Anaplasma marginale and Anaplasma phagocytophilum. <i>Vaccine Journal</i> , 2005 , 12, 1177-83		56
Glycosylation of Anaplasma marginale major surface protein 1a and its putative role in adhesion to tick cells. <i>Infection and Immunity</i> , 2004 , 72, 3022-30	3.7	29
Anaplasma marginale (Rickettsiales: Anaplasmataceae): recent advances in defining host-pathogen adaptations of a tick-borne rickettsia. <i>Parasitology</i> , 2004 , 129 Suppl, S285-300	2.7	201
Differential expression of the msp1alpha gene of Anaplasma marginale occurs in bovine erythrocytes and tick cells. <i>Veterinary Microbiology</i> , 2004 , 98, 261-72	3.3	30
Adhesion of outer membrane proteins containing tandem repeats of Anaplasma and Ehrlichia species (Rickettsiales: Anaplasmataceae) to tick cells. <i>Veterinary Microbiology</i> , 2004 , 98, 313-22	3.3	33
	Vaccination with recombinant tick antigens for the control of Ixodes scapularis adult infestations. <i>Vaccine</i> , 2005, 23, 5294-8 Genetic diversity of anaplasma species major surface proteins and implications for anaplasmosis serodiagnosis and vaccine development. <i>Animal Health Research Reviews</i> , 2005, 6, 75-89 Gene expression profiling of human promyelocytic cells in response to infection with Anaplasma phagocytophilum. <i>Cellular Microbiology</i> , 2005, 7, 549-59 Gene expression profiling of human promyelocytic cells in response to infection with Anaplasma phagocytophilum. <i>Cellular Microbiology</i> , 2005, 7, 549-59 Gapillary tube feeding system for studying tick-pathogen interactions of Dermacentor variabilis (Acari: Ixodidae) and Anaplasma marginale (Rickettsiales: Anaplasmataceae). <i>Journal of Medical Entomology</i> , 2005, 22, 864-74 Serologic and molecular characterization of Anaplasma species infection in farm animals and ticks from Sicily. <i>Veterinary Parasitology</i> , 2005, 133, 357-62 Genetic diversity of Anaplasma marginale strains from cattle farms in the province of Palermo, Sicily. <i>Zoonoses and Public Health</i> , 2005, 52, 226-9 Characterization of genetic diversity in Dermacentor andersoni (Acari: Ixodidae) with body size and weight polymorphism. <i>Experimental Parasitology</i> , 2005, 109, 16-26 RNA interference screening in ticks for identification of protective antigens. <i>Parasitology Research</i> , 2005, 96, 137-41 Infection with Anaplasma phagocytophilum in a seronegative patient in Sicily, Italy: case report. <i>Annals of Clinical Microbiology</i> , 2005, 43, 1309-17 Capillary Tube Feeding System for Studying TickBathogen Interactions of Dermacentor variabilis (Acari: Nodidae) and Anaplasma marginale (Rickettsiales: Anaplasmataceae). <i>Journal of Medical Entomology</i> , 2005, 42, 864-874 bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in Its natural tick vector. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005, 102, 6972-7	Vaccination with recombinant tick antigens for the control of Ixodes scapularis adult infestations. Vaccine, 2005, 23, 5294-8 Genetic diversity of anaplasma species major surface proteins and implications for anaplasmosis serodiagnosis and vaccine development. Animal Health Research Reviews, 2005, 6, 75-89 Gene expression profiling of human promyelocytic cells in response to infection with Anaplasma phagocytophilum. Cellular Microbiology, 2005, 7, 549-59 Capillary tube feeding system for studying tick-pathogen interactions of Dermacentor variabilis (Acari: Ixodidae) and Anaplasma marginale (Rickettsiales: Anaplasmataceae). Journal of Medical Entomology, 2005, 42, 864-74 Serologic and molecular characterization of Anaplasma species infection in farm animals and ticks from Sicily. Veterinary Parasitology, 2005, 133, 357-62 Characterization of genetic diversity in Dermacentor andersoni (Acari: Ixodidae) with body size and weight polymorphism. Experimental Parasitology, 2005, 109, 16-26 RNA interference screening in ticks for identification of protective antigens. Parasitology Research, 24. Infection with Anaplasma phagocytophilum in a seronegative patient in Sicily, Italy: case report. Annals of Clinical Microbiology and Antimicrobials, 2005, 4, 15 Sequence analysis of the msp4 gene of Anaplasma phagocytophilum strains. Journal of Clinical Microbiology, 2005, 43, 1309-17 Capillary Tube Feeding System for Studying TickPathogen Interactions of Dermacentor variabilis (Acari: Ixodidae) and Anaplasma marginale (Rickettsiales: Anaplasmataceae). Journal of Medical Entomology, 2005, 4, 864-74 bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in its natural tick vector. Proceedings of the National Academy of Sciences of the United States of America, 2005, 10, 117-83 Glycosylation of Anaplasma marginale major surface protein 1a and its putative role in adhesion to tick cells. Infection and Immunity, 2004, 72, 3022-30 Differential expression of the msp1alpha gene

71	Anaplasma infection in free-ranging Iberian red deer in the region of Castilla-La Mancha, Spain. <i>Veterinary Microbiology</i> , 2004 , 100, 163-73	3.3	59
70	Recent studies on the characterization of Anaplasma marginale isolated from North American bison. <i>Annals of the New York Academy of Sciences</i> , 2004 , 1026, 114-7	6.5	7
69	Prevalence of tick-borne pathogens in ixodid ticks (Acari: Ixodidae) collected from European wild boar (Sus scrofa) and Iberian red deer (Cervus elaphus hispanicus) in central Spain. <i>European Journal of Wildlife Research</i> , 2004 , 50, 187-196	2	61
68	Genetic diversity and molecular phylogeny of Anaplasma marginale isolates from Minas Gerais, Brazil. <i>Veterinary Parasitology</i> , 2004 , 121, 307-16	2.8	35
67	Mapping of B-cell epitopes in the N-terminal repeated peptides of Anaplasma marginale major surface protein 1a and characterization of the humoral immune response of cattle immunized with recombinant and whole organism antigens. <i>Veterinary Immunology and Immunopathology</i> , 2004 , 98, 137	2 -51	37
66	Differential Antibody Response of Cattle Immunized with Anaplasma marginale Derived from Bovine Erythrocytes or Cultured Tick Cells. <i>Microscopy and Microanalysis</i> , 2003 , 9, 1410-1411	0.5	1
65	The fossil record and the origin of ticks (Acari: Parasitiformes: Ixodida). <i>Experimental and Applied Acarology</i> , 2003 , 29, 331-44	2.1	43
64	Characterization of the functional domain of major surface protein 1a involved in adhesion of the rickettsia Anaplasma marginale to host cells. <i>Veterinary Microbiology</i> , 2003 , 91, 265-83	3.3	65
63	Antibodies to Anaplasma marginale major surface proteins 1a and 1b inhibit infectivity for cultured tick cells. <i>Veterinary Parasitology</i> , 2003 , 111, 247-60	2.8	37
62	Co-feeding studies of ticks infected with Anaplasma marginale. <i>Veterinary Parasitology</i> , 2003 , 112, 295-3	30.5	29
61	Adaptations of the tick-borne pathogen, Anaplasma marginale, for survival in cattle and ticks 2003 , 9-25	;	1
60	Identification of protective antigens for the control of Ixodes scapularis infestations using cDNA expression library immunization. <i>Vaccine</i> , 2003 , 21, 1492-501	4.1	110
59	Advances in the identification and characterization of protective antigens for recombinant vaccines against tick infestations. <i>Expert Review of Vaccines</i> , 2003 , 2, 583-93	5.2	105
58	Anaplasma marginale msp1alpha genotypes evolved under positive selection pressure but are not markers for geographic isolates. <i>Journal of Clinical Microbiology</i> , 2003 , 41, 1609-16	9.7	67
57	Characterization of Anaplasma marginale isolated from North American bison. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 5001-5	4.8	34
56	Infection exclusion of the rickettsial pathogen anaplasma marginale in the tick vector Dermacentor variabilis. <i>Vaccine Journal</i> , 2003 , 10, 182-4		65
55	Antigens and alternatives for control of Anaplasma marginale infection in cattle. <i>Clinical Microbiology Reviews</i> , 2003 , 16, 698-712	34	243

(2000-2002)

53	Vaccination of cattle with Anaplasma marginale derived from tick cell culture and bovine erythrocytes followed by challenge-exposure with infected ticks. <i>Veterinary Microbiology</i> , 2002 , 89, 239-2	2 €1	29	
52	Effect of tetracycline on development of Anaplasma marginale in cultured Ixodes scapularis cells. <i>Veterinary Parasitology</i> , 2002 , 107, 115-26	2.8	11	
51	Adaptations of the tick-borne pathogen, Anaplasma marginale, for survival in cattle and ticks. <i>Experimental and Applied Acarology</i> , 2002 , 28, 9-25	2.1	14	
50	Infection of tick cells and bovine erythrocytes with one genotype of the intracellular ehrlichia Anaplasma marginale excludes infection with other genotypes. <i>Vaccine Journal</i> , 2002 , 9, 658-68		31	
49	Conservation of major surface protein 1 genes of Anaplasma marginale during cyclic transmission between ticks and cattle. <i>Gene</i> , 2002 , 282, 95-102	3.8	56	
48	Applications of a cell culture system for studying the interaction of Anaplasma marginale with tick cells. <i>Animal Health Research Reviews</i> , 2002 , 3, 57-68	2.1	35	
47	Applications of a cell culture system for studying the interaction of Anaplasma marginale with tick cells. <i>Animal Health Research Reviews</i> , 2002 , 3, 57-68	2.1	8	
46	Molecular phylogeny and biogeography of North American isolates of Anaplasma marginale (Rickettsiaceae: Ehrlichieae). <i>Veterinary Parasitology</i> , 2001 , 97, 65-76	2.8	94	
45	Immunization of cattle with Anaplasma marginale derived from tick cell culture. <i>Veterinary Parasitology</i> , 2001 , 102, 151-61	2.8	34	
44	The evaluation of yeast derivatives as adjuvants for the immune response to the Bm86 antigen in cattle. <i>BMC Biotechnology</i> , 2001 , 1, 2	3.5	12	
43	Wine into vinegarthe fall of CubaS biotechnology. <i>Nature Biotechnology</i> , 2001 , 19, 905-7	44.5	2	
42	Differential adhesion of major surface proteins 1a and 1b of the ehrlichial cattle pathogen Anaplasma marginale to bovine erythrocytes and tick cells. <i>International Journal for Parasitology</i> , 2001, 31, 145-53	4.3	92	
41	Major surface protein 1a effects tick infection and transmission of Anaplasma marginale. International Journal for Parasitology, 2001 , 31, 1705-14	4.3	77	
40	Expression of Anaplasma marginale major surface protein 2 variants in persistently infected ticks. <i>Infection and Immunity</i> , 2001 , 69, 5151-6	3.7	17	
39	Evolution and function of tandem repeats in the major surface protein 1a of the ehrlichial pathogen Anaplasma marginale. <i>Animal Health Research Reviews</i> , 2001 , 2, 163-174	2.1	61	
38	Evolution and function of tandem repeats in the major surface protein 1a of the ehrlichial pathogen Anaplasma marginale. <i>Animal Health Research Reviews</i> , 2001 , 2, 163-73	2.1	18	
37	Immunological control of ticks through vaccination with Boophilus microplus gut antigens. <i>Annals of the New York Academy of Sciences</i> , 2000 , 916, 617-21	6.5	58	
36	Molecular analysis of Boophilus spp. (Acari: Ixodidae) tick strains. <i>Veterinary Parasitology</i> , 2000 , 92, 209-2	2:2 8	25	

35	A model to simulate the effect of vaccination against Boophilus ticks on cattle. <i>Veterinary Parasitology</i> , 2000 , 87, 315-26	2.8	23
34	Control of ticks resistant to immunization with Bm86 in cattle vaccinated with the recombinant antigen Bm95 isolated from the cattle tick, Boophilus microplus. <i>Vaccine</i> , 2000 , 18, 2275-87	4.1	133
33	A unified hypothesis for the etiology of epidemic neuropathy. <i>Intervirology</i> , 1999 , 42, 271-2	2.5	Ο
32	Safety Evaluation of Transgenic Tilapia with Accelerated Growth. <i>Marine Biotechnology</i> , 1999 , 1, 2-14	3.4	32
31	Integrated control of acaricide-resistant Boophilus microplus populations on grazing cattle in Mexico using vaccination with Gavac and amidine treatments. <i>Experimental and Applied Acarology</i> , 1999 , 23, 841-9	2.1	47
30	Sequence variations in the Boophilus microplus Bm86 locus and implications for immunoprotection in cattle vaccinated with this antigen. <i>Experimental and Applied Acarology</i> , 1999 , 23, 883-95	2.1	91
29	A simulation study of the effects of acaricides and vaccination on Boophilus cattle-tick populations. <i>Preventive Veterinary Medicine</i> , 1999 , 38, 47-63	3.1	18
28	Vaccination against ticks (Boophilus spp.): the experience with the Bm86-based vaccine Gavac. <i>Genetic Analysis, Techniques and Applications</i> , 1999 , 15, 143-8		125
27	Growth regulation and enhancement in tilapia: basic research findings and their applications. <i>Genetic Analysis, Techniques and Applications</i> , 1999 , 15, 85-90		18
26	Reproductive and safety assessment of vaccination with Gavac against the cattle tick (Boophilus microplus). <i>Theriogenology</i> , 1999 , 51, 1547-54	2.8	11
25	Analysis of enterovirus sequences recovered from the cerebrospinal fluid of patients with epidemic neuropathy. <i>Annals of Tropical Medicine and Parasitology</i> , 1999 , 93, 153-161		2
24	Field studies and cost-effectiveness analysis of vaccination with Gavac against the cattle tick Boophilus microplus. <i>Vaccine</i> , 1998 , 16, 366-73	4.1	154
23	Effect of particulation on the immunogenic and protective properties of the recombinant Bm86 antigen expressed in Pichia pastoris. <i>Vaccine</i> , 1998 , 16, 374-80	4.1	24
22	Protection against Boophilus annulatus infestations in cattle vaccinated with the B. microplus Bm86-containing vaccine Gavac. off. <i>Vaccine</i> , 1998 , 16, 1990-2	4.1	88
21	Adjuvant and immunostimulating properties of the recombinant Bm86 protein expressed in Pichia pastoris. <i>Vaccine</i> , 1998 , 16, 1053-5	4.1	26
20	Large-scale production in Pichia pastoris of the recombinant vaccine Gavac against cattle tick. <i>Vaccine</i> , 1997 , 15, 414-22	4.1	129
19	Simulation of control strategies for the cattle tick Boophilus microplus employing vaccination with a recombinant Bm86 antigen preparation. <i>Veterinary Parasitology</i> , 1996 , 63, 131-60	2.8	19
18	Biochemical characterization of the recombinant Boophilus microplus Bm86 antigen expressed by transformed Pichia pastoris cells. <i>Biotechnology and Applied Biochemistry</i> , 1996 , 23, 23-8	2.8	18

LIST OF PUBLICATIONS

17	Growth enhancement in transgenic tilapia by ectopic expression of tilapia growth hormone. <i>Molecular Marine Biology and Biotechnology</i> , 1996 , 5, 62-70	35
16	Control of Boophilus microplus populations in grazing cattle vaccinated with a recombinant Bm86 antigen preparation. <i>Veterinary Parasitology</i> , 1995 , 57, 339-49	84
15	Effect of vaccination with a recombinant Bm86 antigen preparation on natural infestations of Boophilus microplus in grazing dairy and beef pure and cross-bred cattle in Brazil. <i>Vaccine</i> , 1995 , 13, 1804-8	63
14	Differential constitutive expression of interferon genes in early mouse embryos. <i>Molecular Reproduction and Development</i> , 1995 , 41, 157-66	15
13	The sound of the DNA language. <i>Biological Research</i> , 1995 , 28, 197-204	4
12	High level expression of the B. microplus Bm86 antigen in the yeast Pichia pastoris forming highly immunogenic particles for cattle. <i>Journal of Biotechnology</i> , 1994 , 33, 135-46	148
11	Detection of Bm86 antigen in different strains of Boophilus microplus and effectiveness of immunization with recombinant Bm86. <i>Parasite Immunology</i> , 1994 , 16, 493-500	30
10	Molecular cloning of the gene, expression in E. coli and purification of the thermus aquaticus DNA polymerase I. <i>Acta Biotechnologica</i> , 1992 , 12, 155-159	1
9	Different pathways mediate virus inducibility of the human IFN-alpha 1 and IFN-beta genes. <i>Cell</i> , 1990 , 60, 767-79	166
8	Introduction of foreign DNA into the spermatozoa of farm animals. <i>Theriogenology</i> , 1990 , 34, 1099-1110 ₂ .8	44
7	Reversible silencing of enhancers by sequences derived from the human IFN-alpha promoter. <i>Cell</i> , 1987 , 50, 1057-69	127
6	Characterization of the tickpathogenBost interface of the tick-borne rickettsia Anaplasma marginale325-343	1
5	The antibody response to the glycan to all correlates with COVID-19 disease symptoms	2
4	COVID-19 in a Rural Community: Outbreak Dynamics, Contact Tracing and Environmental RNA	2
3	Assessing the Risks of SARS-CoV-2 in Wildlife	3
2	Anti-microbiota vaccines modulate the tick microbiome in a taxon-specific manner	1
1	Natural SARS-CoV-2 infection in kept ferrets, Spain	8