
Jin-Mun Yun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11410580/publications.pdf Version: 2024-02-01

Ιινι-Μιινι Υιινι

#	Article	IF	CITATIONS
1	Solutionâ€Processable Reduced Graphene Oxide as a Novel Alternative to PEDOT:PSS Hole Transport Layers for Highly Efficient and Stable Polymer Solar Cells. Advanced Materials, 2011, 23, 4923-4928.	21.0	363
2	Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy, 2015, 12, 96-104.	16.0	328
3	Planar heterojunction perovskite solar cells with superior reproducibility. Scientific Reports, 2014, 4, 6953.	3.3	208
4	Efficient work-function engineering of solution-processed MoS2 thin-films for novel hole and electron transport layers leading to high-performance polymer solar cells. Journal of Materials Chemistry C, 2013, 1, 3777.	5.5	173
5	Significant Vertical Phase Separation in Solvent-Vapor-Annealed Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Composite Films Leading to Better Conductivity and Work Function for High-Performance Indium Tin Oxide-Free Optoelectronics. ACS Applied Materials &: Interfaces. 2012. 4. 2551-2560.	8.0	162
6	Direct Observation of Ag Filamentary Paths in Organic Resistive Memory Devices. Advanced Functional Materials, 2011, 21, 3976-3981.	14.9	149
7	Exfoliated and Partially Oxidized MoS ₂ Nanosheets by Oneâ€Pot Reaction for Efficient and Stable Organic Solar Cells. Small, 2014, 10, 2319-2324.	10.0	102
8	High-performance polymer solar cells with moderately reduced graphene oxide as an efficient hole transporting layer. Solar Energy Materials and Solar Cells, 2012, 105, 96-102.	6.2	101
9	Fluorine-functionalized and simultaneously reduced graphene oxide as a novel hole transporting layer for highly efficient and stable organic photovoltaic cells. Nanoscale, 2014, 6, 7183-7187.	5.6	74
10	Quinoidal Molecules as a New Class of Ambipolar Semiconductor Originating from Amphoteric Redox Behavior. Advanced Functional Materials, 2015, 25, 1146-1156.	14.9	74
11	Highly Soluble Poly(thienylenevinylene) Derivatives with Charge-Carrier Mobility Exceeding 1 cm2V–1s–1. Chemistry of Materials, 2011, 23, 4663-4665.	6.7	72
12	Lowâ€Temperatureâ€Processed 9% Colloidal Quantum Dot Photovoltaic Devices through Interfacial Management of p–n Heterojunction. Advanced Energy Materials, 2016, 6, 1502146.	19.5	70
13	Sulfonic acid-functionalized, reduced graphene oxide as an advanced interfacial material leading to donor polymer-independent high-performance polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 292-298.	10.3	69
14	Successive solvent-treated PEDOT:PSS electrodes for flexible ITO-free organic photovoltaics. Solar Energy Materials and Solar Cells, 2013, 114, 104-109.	6.2	64
15	Stable charge storing in two-dimensional MoS ₂ nanoflake floating gates for multilevel organic flash memory. Nanoscale, 2014, 6, 12315-12323.	5.6	64
16	Optimal Ambipolar Charge Transport of Thienylenevinylene-Based Polymer Semiconductors by Changes in Conformation for High-Performance Organic Thin Film Transistors and Inverters. Chemistry of Materials, 2013, 25, 1572-1583.	6.7	55
17	Moderately reduced graphene oxide as transparent counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2012, 81, 301-307.	5.2	52
18	In Situ Self-Formed Nanosheet MoS3/Reduced Graphene Oxide Material Showing Superior Performance as a Lithium-Ion Battery Cathode. ACS Nano, 2018, 13, 1490-1498.	14.6	49

Jin-Mun Yun

#	Article	IF	CITATIONS
19	Moderately reduced graphene oxide as hole transport layer in polymer solar cells via thermal assisted spray process. Applied Surface Science, 2014, 296, 140-146.	6.1	42
20	2-Dimensional MoS2 nanosheets as transparent and highly electrocatalytic counter electrode in dye-sensitized solar cells: Effect of thermal treatments. Journal of Industrial and Engineering Chemistry, 2015, 29, 71-77.	5.8	35
21	A Novel Thermally Reversible Solubleâ€Insoluble Conjugated Polymer with Semiâ€Fluorinated Alkyl Chains: Enhanced Transistor Performance by Fluorophobic Selfâ€Organization and Orthogonal Hydrophobic Patterning. Advanced Materials, 2013, 25, 6416-6422.	21.0	34
22	Synthesis of novel arylamine containing perfluorocyclobutane and its electrochromic properties. Journal of Materials Chemistry, 2009, 19, 2380.	6.7	32
23	Variations of cell performance in ITO-free organic solar cells with increasing cell areas. Semiconductor Science and Technology, 2011, 26, 034010.	2.0	31
24	Bi-axial grown amorphous MoSx bridged with oxygen on r-GO as a superior stable and efficient nonprecious catalyst for hydrogen evolution. Scientific Reports, 2017, 7, 41190.	3.3	31
25	<i>In situ</i> study of the film formation mechanism of organic–inorganic hybrid perovskite solar cells: controlling the solvate phase using an additive system. Journal of Materials Chemistry A, 2020, 8, 7695-7703.	10.3	29
26	An Approach for an Advanced Anode Interfacial Layer with Electron-Blocking Ability to Achieve High-Efficiency Organic Photovoltaics. ACS Applied Materials & Interfaces, 2014, 6, 19613-19620.	8.0	24
27	Transparent graphene oxide–Pt composite counter electrode fabricated by pulse current electrodeposition-for dye-sensitized solar cells. Surface and Coatings Technology, 2014, 242, 8-13.	4.8	19
28	Morphological, optical, and electrical investigations of solution-processed reduced graphene oxide and its application to transparent electrodes in organic solar cells. Journal of Industrial and Engineering Chemistry, 2015, 21, 877-883.	5.8	17
29	Orthogonal Printable Reduced Graphene Oxide 2D Materials as Hole Transport Layers for High-Performance Inverted Polymer Solar Cells: Sheet Size Effect on Photovoltaic Properties. ACS Applied Materials & Interfaces, 2020, 12, 42811-42820.	8.0	14
30	Efficient polymer solar cells with a solution-processed gold chloride as an anode interfacial modifier. Applied Physics Letters, 2013, 102, 163302.	3.3	13
31	A thienylenevinylene-phthalimide copolymer based polymer solar cell with high open circuit voltage: Effect of additive concentration on the open circuit voltage. Solar Energy Materials and Solar Cells, 2014, 125, 253-260.	6.2	13
32	2D/2D vanadyl phosphate (VP) on reduced graphene oxide as a hole transporting layer for efficient organic solar cells. Organic Electronics, 2018, 59, 92-98.	2.6	13
33	Synthesis and Characterization of Poly(Dithieno[3,2â€ <i>b</i> :2′,3′â€ <i>d</i>]pyrrole) Derivatives Containing Thiophene Moieties and Their Application to Organic Devices. Macromolecular Chemistry and Physics, 2011, 212, 2308-2318.	2.2	12
34	Formation of Large Crystalline Domains in a Semiconducting Polymer with Semi-fluorinated Alkyl Side Chains and Application to High-Performance Thin-Film Transistors. ACS Applied Materials & Interfaces, 2020, 12, 49886-49894.	8.0	12
35	Graphene oxide and water-soluble polymer composite materials as efficient hole transporting layer for high performance organic solar cells. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 376-381.	1.8	11
36	Water dispersion of reduced graphene oxide stabilized via fullerenol semiconductor for organic solar cells. Optical Materials Express, 2017, 7, 2487.	3.0	11

Jin-Mun Yun

#	Article	IF	CITATIONS
37	Synthesis and characterization of a novel ambipolar polymer semiconductor based on a fumaronitrile core as an electronâ€withdrawing group. Journal of Polymer Science Part A, 2013, 51, 1029-1039.	2.3	10
38	ZnO films using a precursor solution irradiated with an electron beam as the cathode interfacial layer in inverted polymer solar cells. RSC Advances, 2017, 7, 26689-26696.	3.6	9
39	Nitrogen-doped and simultaneously reduced graphene oxide with superior dispersion as electrocatalysts for oxygen reduction reaction. Materials Research Bulletin, 2014, 59, 145-149.	5.2	8
40	Enhanced performance of perovskite solar cells with solution-processed n-doping of the PCBM interlayer. RSC Advances, 2016, 6, 64962-64966.	3.6	6
41	Effect of chemically converted graphene as an electrode interfacial modifier on device-performances of inverted organic photovoltaic cells. Semiconductor Science and Technology, 2015, 30, 065008.	2.0	1