Katarina Nikolic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11409195/publications.pdf

Version: 2024-02-01

516710 454955 1,332 30 16 30 citations h-index g-index papers 31 31 31 2591 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A perspective on multiâ€target drug discovery and design for complex diseases. Clinical and Translational Medicine, 2018, 7, 3.	4.0	481
2	Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer's disease. Progress in Neurobiology, 2017, 151, 4-34.	5.7	128
3	Design, synthesis, pharmacological evaluation, QSAR analysis, molecular modeling and ADMET of novel donepezil–indolyl hybrids as multipotent cholinesterase/monoamine oxidase inhibitors for the potential treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 2014, 75, 82-95.	5 . 5	109
4	One for All? Hitting Multiple Alzheimer's Disease Targets with One Drug. Frontiers in Neuroscience, 2016, 10, 177.	2.8	75
5	In silico Methods for Design of Kinase Inhibitors as Anticancer Drugs. Frontiers in Chemistry, 2019, 7, 873.	3.6	71
6	Drug Design for CNS Diseases: Polypharmacological Profiling of Compounds Using Cheminformatic, 3D-QSAR and Virtual Screening Methodologies. Frontiers in Neuroscience, 2016, 10, 265.	2.8	62
7	<i>N-Methyl- $<$ i>N-((1-methyl-5-(3-(1-(2-methylbenzyl)piperidin-4-yl)propoxy)-1 <i>H</i> -indol-2-yl)methyl)pa New Cholinesterase and Monoamine Oxidase Dual Inhibitor. Journal of Medicinal Chemistry, 2014, 57, 10455-10463.	orop-2-yn-1 6.4	l-amine, 56
8	Multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer's disease: design, synthesis, biochemical evaluation, ADMET, molecular modeling, and QSAR analysis of novel donepezil-pyridyl hybrids. Drug Design, Development and Therapy, 2014, 8, 1893.	4.3	35
9	QSAR study of imidazoline antihypertensive drugs. Bioorganic and Medicinal Chemistry, 2008, 16, 7134-7140.	3.0	30
10	Procognitive Properties of Drugs with Single and Multitargeting H ₃ Receptor Antagonist Activities. CNS Neuroscience and Therapeutics, 2014, 20, 613-623.	3.9	29
11	17β-carboxamide steroids – in vitro prediction of human skin permeability and retention using PAMPA technique. European Journal of Pharmaceutical Sciences, 2014, 52, 95-108.	4.0	28
12	Prediction of blood–brain barrier permeation of α-adrenergic and imidazoline receptor ligands using PAMPA technique and quantitative-structure permeability relationship analysis. European Journal of Pharmaceutical Sciences, 2015, 68, 94-105.	4.0	28
13	Partial Least Square and Hierarchical Clustering in ADMET Modeling: Prediction of Blood – Brain Barrier Permeation of α-Adrenergic and Imidazoline Receptor Ligands. Journal of Pharmacy and Pharmaceutical Sciences, 2013, 16, 622.	2.1	24
14	Prediction of hepatic microsomal intrinsic clearance and human clearance values for drugs. Journal of Molecular Graphics and Modelling, 2009, 28, 245-252.	2.4	22
15	Biopartitioning micellar chromatography as a predictive tool for skin and corneal permeability of newly synthesized 17l²-carboxamide steroids. European Journal of Pharmaceutical Sciences, 2014, 56, 105-112.	4.0	20
16	Pharmacophore Development and SAR Studies of Imidazoline Receptor Ligands. Mini-Reviews in Medicinal Chemistry, 2012, 12, 1542-1555.	2.4	18
17	Application of in vitro PAMPA technique and in silico computational methods for blood-brain barrier permeability prediction of novel CNS drug candidates. European Journal of Pharmaceutical Sciences, 2022, 168, 106056.	4.0	18
18	Predicting targets of compounds against neurological diseases using cheminformatic methodology. Journal of Computer-Aided Molecular Design, 2015, 29, 183-198.	2.9	16

#	Article	IF	CITATIONS
19	Quantitative structureâ€mobility relationship analysis of imidazoline receptor ligands in <scp>CD</scp> sâ€mediated <scp>CE</scp> . Electrophoresis, 2013, 34, 471-482.	2.4	13
20	Pharmacophore modeling, drug design and virtual screening on multi-targeting procognitive agents approaching histaminergic pathways. Journal of the Taiwan Institute of Chemical Engineers, 2015, 46, 15-29.	5 . 3	11
21	Application of biopartitioning micellar chromatography and QSRR modeling for prediction of gastrointestinal absorption and design of novel \hat{l}^2 -hydroxy- \hat{l}^2 -arylalkanoic acids. European Journal of Pharmaceutical Sciences, 2017, 100, 280-284.	4.0	10
22	ESTIMATION OF LIPOPHILICITY AND RETENTION BEHAVIOR OF SOME ALPHA ADRENERGIC AND IMIDAZOLINE RECEPTOR LIGANDS USING RP-TLC. Journal of Liquid Chromatography and Related Technologies, 2014, 37, 2829-2845.	1.0	8
23	The Quantitative Structure–Retention Relationship (QSRR) Analysis of Some Centrally Acting Antihypertensives and Diuretics. QSAR and Combinatorial Science, 2008, 27, 1036-1044.	1.4	7
24	An Experimental Design Approach to Selecting the Optimum HPLC Conditions for the Determination of 2-Arylimidazoline Derivatives. Journal of Liquid Chromatography and Related Technologies, 2009, 32, 656-667.	1.0	7
25	Quantitative structure-retention relationship modeling of the retention behavior of guanidine and imidazoline derivatives in reversed-phase thin-layer chromatography. Journal of Planar Chromatography - Modern TLC, 2015, 28, 119-125.	1.2	7
26	In vitro prediction of gastrointestinal absorption of novel \hat{l}^2 -hydroxy- \hat{l}^2 -arylalkanoic acids using PAMPA technique. European Journal of Pharmaceutical Sciences, 2017, 100, 36-41.	4.0	6
27	Determination of Moxonidine and Its Impurities by Thin-Layer Chromatography. Journal of Liquid Chromatography and Related Technologies, 2015, 38, 1121-1125.	1.0	4
28	A Comparative Study of Chromatographic Behavior and Lipophilicity of Selected Imidazoline Derivatives. Journal of Chromatographic Science, 2016, 54, 1137-1145.	1.4	3
29	Evaluation of Biological Activity and Computerâ€Aided Design of New Soft Glucocorticoids. Archiv Der Pharmazie, 2017, 350, 1600383.	4.1	3
30	Current computer-aided drug design methodologies in discovery of novel drug candidates for neuropsychiatric and inflammatory diseases. Arhiv Za Farmaciju, 2021, 71, 225-256.	0.5	0