Linus Sandegren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1140762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selection of Resistant Bacteria at Very Low Antibiotic Concentrations. PLoS Pathogens, 2011, 7, e1002158.	2.1	1,248
2	Selection of a Multidrug Resistance Plasmid by Sublethal Levels of Antibiotics and Heavy Metals. MBio, 2014, 5, e01918-14.	1.8	451
3	Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nature Reviews Microbiology, 2009, 7, 578-588.	13.6	299
4	Nitrofurantoin resistance mechanism and fitness cost in Escherichia coli. Journal of Antimicrobial Chemotherapy, 2008, 62, 495-503.	1.3	157
5	Selection of antibiotic resistance at very low antibiotic concentrations. Upsala Journal of Medical Sciences, 2014, 119, 103-107.	0.4	154
6	Transfer of an Escherichia coli ST131 multiresistance cassette has created a Klebsiella pneumoniae-specific plasmid associated with a major nosocomial outbreak. Journal of Antimicrobial Chemotherapy, 2012, 67, 74-83.	1.3	133
7	Potential of Tetracycline Resistance Proteins To Evolve Tigecycline Resistance. Antimicrobial Agents and Chemotherapy, 2016, 60, 789-796.	1.4	127
8	The first major extendedâ€spectrum βâ€lactamase outbreak in Scandinavia was caused by clonal spread of a multiresistant <i>Klebsiella pneumoniae</i> producing CTXâ€Mâ€15. Apmis, 2008, 116, 302-8.	0.9	83
9	High Fitness Costs and Instability of Gene Duplications Reduce Rates of Evolution of New Genes by Duplication-Divergence Mechanisms. Molecular Biology and Evolution, 2014, 31, 1526-1535.	3.5	82
10	Mechanisms and fitness costs of tigecycline resistance in Escherichia coli. Journal of Antimicrobial Chemotherapy, 2013, 68, 2809-2819.	1.3	77
11	Antimicrobial Drug–Resistant <i>Escherichia coli</i> in Wild Birds and Free-range Poultry, Bangladesh. Emerging Infectious Diseases, 2012, 18, 2055-2058.	2.0	75
12	Combinations of mutations in <i>envZ</i> , <i>ftsl</i> , <i>mrdA</i> , <i>acrB</i> and <i>acrR</i> can cause high-level carbapenem resistance in <i>Escherichia coli</i> . Journal of Antimicrobial Chemotherapy, 2016, 71, 1188-1198.	1.3	68
13	Time lapse investigation of antibiotic susceptibility using a microfluidic linear gradient 3D culture device. Lab on A Chip, 2014, 14, 3409-3418.	3.1	64
14	Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping. Scientific Reports, 2016, 6, 37938.	1.6	57
15	Frequent emergence of porin-deficient subpopulations with reduced carbapenem susceptibility in ESBL-producing Escherichia coli during exposure to ertapenem in an in vitro pharmacokinetic model. Journal of Antimicrobial Chemotherapy, 2013, 68, 1319-1326.	1.3	56
16	Selection of Orphan Rhs Toxin Expression in Evolved Salmonella enterica Serovar Typhimurium. PLoS Genetics, 2014, 10, e1004255.	1.5	56
17	Silver Resistance Genes Are Overrepresented among Escherichia coli Isolates with CTX-M Production. Applied and Environmental Microbiology, 2014, 80, 6863-6869.	1.4	56
18	Characterization of ESBL disseminating plasmids. Infectious Diseases, 2016, 48, 18-25.	1.4	56

LINUS SANDEGREN

#	Article	IF	CITATIONS
19	Influence of acquired Â-lactamases on the evolution of spontaneous carbapenem resistance in Escherichia coli. Journal of Antimicrobial Chemotherapy, 2013, 68, 51-59.	1.3	49
20	Plasmidome-Analysis of ESBL-Producing Escherichia coli Using Conventional Typing and High-Throughput Sequencing. PLoS ONE, 2013, 8, e65793.	1.1	44
21	Distribution, Sequence Homology, and Homing of Group I Introns among T-even-like Bacteriophages. Journal of Biological Chemistry, 2004, 279, 22218-22227.	1.6	41
22	Rapid identification of intact bacterial resistance plasmids via optical mapping of single DNA molecules. Scientific Reports, 2016, 6, 30410.	1.6	38
23	The Role of Antibiotic Resistance Genes in the Fitness Cost of Multiresistance Plasmids. MBio, 2022, 13, e0355221.	1.8	34
24	A blaOXA-181-harbouring multi-resistant ST147 Klebsiella pneumoniae isolate from Pakistan that represent an intermediate stage towards pan-drug resistance. PLoS ONE, 2017, 12, e0189438.	1.1	31
25	SegH and Hef: two novel homing endonucleases whose genes replace the mobC and mobE genes in several T4-related phages. Nucleic Acids Research, 2005, 33, 6203-6213.	6.5	29
26	Genomic Stability over 9 Years of an Isoniazid Resistant Mycobacterium tuberculosis Outbreak Strain in Sweden. PLoS ONE, 2011, 6, e16647.	1.1	27
27	Self-Splicing of the Bacteriophage T4 Group I Introns Requires Efficient Translation of the Pre-mRNA In Vivo and Correlates with the Growth State of the Infected Bacterium. Journal of Bacteriology, 2007, 189, 980-990.	1.0	23
28	Optical DNA Mapping Combined with Cas9-Targeted Resistance Gene Identification for Rapid Tracking of Resistance Plasmids in a Neonatal Intensive Care Unit Outbreak. MBio, 2019, 10, .	1.8	23
29	Low sub-minimal inhibitory concentrations of antibiotics generate new types of resistance. Sustainable Chemistry and Pharmacy, 2019, 11, 46-48.	1.6	22
30	Genomically diverse carbapenem resistant Enterobacteriaceae from wild birds provide insight into global patterns of spatiotemporal dissemination. Science of the Total Environment, 2022, 824, 153632.	3.9	22
31	Longâ€ŧerm carriage and rapid transmission of extended spectrum betaâ€ŀactamaseâ€producing <scp><i>E. coli</i></scp> within a flock of Mallards in the absence of antibiotic selection. Environmental Microbiology Reports, 2018, 10, 576-582.	1.0	20
32	Efficacy of Antibiotic Combinations against Multidrug-Resistant Pseudomonas aeruginosa in Automated Time-Lapse Microscopy and Static Time-Kill Experiments. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	20
33	Fitness of <i>Escherichia coli</i> mutants with reduced susceptibility to tigecycline. Journal of Antimicrobial Chemotherapy, 2016, 71, 1307-1313.	1.3	18
34	Dynamics of Resistance Plasmids in Extended-Spectrum-Î ² -Lactamase-Producing <i>Enterobacteriaceae</i> during Postinfection Colonization. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	18
35	Pathoadaptive Mutations in Salmonella enterica Isolated after Serial Passage in Mice. PLoS ONE, 2013, 8, e70147.	1.1	16
36	Facilitated sequence assembly using densely labeled optical DNA barcodes: A combinatorial auction approach. PLoS ONE, 2018, 13, e0193900.	1.1	15

LINUS SANDEGREN

#	Article	IF	CITATIONS
37	Genome and plasmid diversity of Extended-Spectrum β-Lactamase-producing Escherichia coli ST131 – tracking phylogenetic trajectories with Bayesian inference. Scientific Reports, 2019, 9, 10291.	1.6	15
38	Cultivation-Free Typing of Bacteria Using Optical DNA Mapping. ACS Infectious Diseases, 2020, 6, 1076-1084.	1.8	14
39	A pharmacokinetic–pharmacodynamic model characterizing the emergence of resistantEscherichia colisubpopulations during ertapenem exposure. Journal of Antimicrobial Chemotherapy, 2016, 71, 2521-2533.	1.3	12
40	Dynamics of Extensive Drug Resistance Evolution of Mycobacterium tuberculosis in a Single Patient During 9 Years of Disease and Treatment. Journal of Infectious Diseases, 2020, , .	1.9	12
41	Metallo-β-Lactamase Inhibitor Phosphonamidate Monoesters. ACS Omega, 2022, 7, 4550-4562.	1.6	10
42	Selection of Resistant Bacteria in Mallards Exposed to Subinhibitory Concentrations of Ciprofloxacin in Their Water Environment. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	9
43	Evolutionary Trajectories toward High-Level β-Lactam/β-Lactamase Inhibitor Resistance in the Presence of Multiple β-Lactamases. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	7
44	Modular 3D-Printed Peg Biofilm Device for Flexible Setup of Surface-Related Biofilm Studies. Frontiers in Cellular and Infection Microbiology, 2021, 11, 802303.	1.8	6
45	A simple cut and stretch assay to detect antimicrobial resistance genes on bacterial plasmids by single-molecule fluorescence microscopy. Scientific Reports, 2022, 12, .	1.6	4
46	A Parallelized Nanofluidic Device for High-Throughput Optical DNA Mapping of Bacterial Plasmids. Micromachines, 2021, 12, 1234.	1.4	3
47	Detection of structural variations in densely-labelled optical DNA barcodes: A hidden Markov model approach. PLoS ONE, 2021, 16, e0259670.	1.1	1