
Maria P Luda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1140718/publications.pdf Version: 2024-02-01

Μαρία ΡΙμπα

#	Article	IF	CITATIONS
1	Oxidation in orthopaedic UHMWPE sterilized by gamma-radiation and ethylene oxide. Biomaterials, 1998, 19, 659-668.	11.4	264
2	In vivo UHMWPE biodegradation of retrieved prosthesis. Biomaterials, 1998, 19, 1371-1385.	11.4	123
3	Thermal decomposition of fire retardant brominated epoxy resins. Journal of Analytical and Applied Pyrolysis, 2002, 65, 25-40.	5.5	120
4	Stabilisation of ultra-high molecular weight polyethylene with Vitamin E. Polymer Degradation and Stability, 2007, 92, 2155-2162.	5.8	116
5	Analysis of products diffused into UHMWPE prosthetic components in vivo. Biomaterials, 2001, 22, 307-315.	11.4	104
6	Thermal decomposition of fire retardant brominated epoxy resins cured with different nitrogen containing hardeners. Polymer Degradation and Stability, 2007, 92, 1088-1100.	5.8	88
7	A review of experimental studies of the role of free-radicals in polyethylene oxidation. Polymer Degradation and Stability, 2018, 155, 67-83.	5.8	81
8	Radiation-induced crosslinking of UHMWPE in the presence of co-agents: chemical and mechanical characterisation. Polymer, 2005, 46, 10648-10657.	3.8	76
9	Crosslinking and carbonization processes in PAN films and nanofibers. Polymer Degradation and Stability, 2016, 123, 178-188.	5.8	73
10	Oxidation behaviour in prosthetic UHMWPE components sterilised with high energy radiation in a low-oxygen environment. Polymer Degradation and Stability, 2006, 91, 2030-2038.	5.8	70
11	Pyrolysis of fire retardant anhydride-cured epoxy resins. Journal of Analytical and Applied Pyrolysis, 2010, 88, 39-52.	5.5	59
12	Oxidation behaviour in prosthetic UHMWPE components sterilised with high-energy radiation in the presence of oxygen. Polymer Degradation and Stability, 2006, 91, 3057-3064.	5.8	49
13	Post-irradiation oxidation of different polyethylenes. Polymer Degradation and Stability, 2011, 96, 624-629.	5.8	47
14	Characterization and reprocessing of greenhouse films. Polymer Degradation and Stability, 2001, 72, 141-146.	5.8	35
15	Thermal decomposition behavior of 1,2-bis-(2,4,6-tribromophenoxy)ethane. Journal of Analytical and Applied Pyrolysis, 2003, 67, 95-107.	5.5	34
16	WEEE recycling: Pyrolysis of fire retardant model polymers. Waste Management, 2005, 25, 203-208.	7.4	31
17	Cyclodextrins and Cyclodextrin Derivatives as Green Char Promoters in Flame Retardants Formulations for Polymeric Materials. A Review. Polymers, 2019, 11, 664.	4.5	28
18	Natural Ageing of Automotive Polymer Components: Characterisation of New and Used Poly(propylene) based Car Bumpers. Macromolecular Materials and Engineering, 2002, 287, 404.	3.6	25

Maria P Luda

#	Article	IF	CITATIONS
19	Regenerative Recycling of Automotive Polymer Components: Poly(propylene) Based Car Bumpers. Macromolecular Materials and Engineering, 2003, 288, 613-620.	3.6	22
20	Pyrolysis Study of Halogen-Containing Aromatics Reflecting Reactions with Polypropylene in a Posttreatment Decontamination Process. Environmental Science & Technology, 2005, 39, 5469-5474.	10.0	21
21	The thermal and thermo-oxidative degradation of poly(tetrahydrofuran) and its complexes with LiBr and Lil. Polymer Degradation and Stability, 2000, 67, 527-533.	5.8	20
22	On the microstructure of polypropylenes by pyrolysis GC–MS. Polymer Degradation and Stability, 2014, 110, 35-43.	5.8	17
23	Characterisation of Used PP-Based Car Bumpers and Their Recycling Properties. ISRN Materials Science, 2013, 2013, 1-12.	1.0	14
24	Synergistic action of fluorine-containing additives in bromine/antimony fire retardant ABS. Polymer Degradation and Stability, 1999, 64, 497-500.	5.8	13
25	Mechanism of condensed phase action in flame retardants. Synergistic systems based on halogen-metal compounds. Polymer Degradation and Stability, 2000, 68, 67-74.	5.8	13
26	Relevant factors in scorch generation in fire retarded flexible polyurethane foams. Polymer Degradation and Stability, 2004, 86, 33-41.	5.8	12
27	Discolouration in fire retardant flexible polyurethane foams. Part I. Characterisation. Polymer Degradation and Stability, 2004, 83, 215-220.	5.8	11
28	Thermal hydrodehalogenation of 2,4-dibromophenol by polymeric materials. Journal of Analytical and Applied Pyrolysis, 2011, 90, 63-71.	5.5	11
29	Mechanism of photostabilization of perfluoropolyether coatings by hindered amine stabilisers. Polymer Degradation and Stability, 2001, 73, 387-392.	5.8	10
30	Scavenging of halogen in recycling of halogen-based polymer materials. Macromolecular Symposia, 2002, 180, 141-152.	0.7	10
31	Discoloration in Fire-Retardant Flexible Polyurethane Foams. Journal of Cellular Plastics, 2005, 41, 235-250.	2.4	10
32	Thermal decomposition of 4,4′-diaminodiphenylsulphone. Thermochimica Acta, 1995, 260, 217-228.	2.7	8
33	Relevant factors in scorch generation in fire retarded flexible polyurethane foams. Polymer Degradation and Stability, 2004, 86, 43-50.	5.8	6
34	Evaluation of Antifingerprint Properties of Plastic Surfaces Used in Automotive Components. International Journal of Polymer Science, 2018, 2018, 1-11.	2.7	6
35	Pyrolysis of WEEE plastics. , 2012, , 239-263.		5
36	Amino derivatives of PEEKâ€WC. Journal of Applied Polymer Science, 2010, 117, 2258-2264.	2.6	1