
Thomas E Smithgall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/114066/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Inhibitors of HIV-1 Nef-Mediated Activation of the Myeloid Src-Family Kinase Hck Block HIV-1 Replication in Macrophages and Disrupt MHC-I Downregulation. ACS Infectious Diseases, 2022, 8, 91-105.	3.8	7
2	Behavioural immune landscapes of inflammation. Nature, 2022, 601, 415-421.	27.8	53
3	Kinases/Phosphatases Fes Tyrosine Kinase. , 2021, , 358-363.		0
4	Visualization of Host Cell Kinase Activation by Viral Proteins Using GFP Fluorescence Complementation and Immunofluorescence Microscopy. Bio-protocol, 2021, 11, e4068.	0.4	1
5	Tight-Binding Hydroxypyrazole HIV-1 Nef Inhibitors Suppress Viral Replication in Donor Mononuclear Cells and Reverse Nef-Mediated MHC-I Downregulation. ACS Infectious Diseases, 2020, 6, 302-312.	3.8	17
6	Structure, function, and inhibitor targeting of HIV-1 Nef-effector kinase complexes. Journal of Biological Chemistry, 2020, 295, 15158-15171.	3.4	34
7	HIV-1 Nef dimers short-circuit immune receptor signaling by activating Tec-family kinases at the host cell membrane. Journal of Biological Chemistry, 2020, 295, 5163-5174.	3.4	10
8	<i>In Vitro</i> Evolution Reveals a Single Mutation as Sole Source of Src-Family Kinase C-Helix-out Inhibitor Resistance. ACS Chemical Biology, 2020, 15, 2175-2184.	3.4	4
9	Nef homodimers down-regulate SERINC5 by AP-2–mediated endocytosis to promote HIV-1 infectivity. Journal of Biological Chemistry, 2020, 295, 15540-15552.	3.4	15
10	Molecular basis for the interaction between human choline kinase alpha and the SH3 domain of the c-Src tyrosine kinase. Scientific Reports, 2019, 9, 17121.	3.3	7
11	Expression of myeloid Src-family kinases is associated with poor prognosis in AML and influences Flt3-ITD kinase inhibitor acquired resistance. PLoS ONE, 2019, 14, e0225887.	2.5	16
12	Discovery of Non-peptide Small Molecule Allosteric Modulators of the Src-family Kinase, Hck. Frontiers in Chemistry, 2019, 7, 822.	3.6	6
13	HIV-1 Nef Antagonizes SERINC5 Restriction by Downregulation of SERINC5 via the Endosome/Lysosome System. Journal of Virology, 2018, 92, .	3.4	77
14	Remodeling of HIV-1 Nef Structure by Src-Family Kinase Binding. Journal of Molecular Biology, 2018, 430, 310-321.	4.2	18
15	The Src family kinase Fgr is a transforming oncoprotein that functions independently of SH3-SH2 domain regulation. Science Signaling, 2018, 11, .	3.6	22
16	Selective Inhibition of the Myeloid Src-Family Kinase Fgr Potently Suppresses AML Cell Growth <i>in Vitro</i> and <i>in Vivo</i> . ACS Chemical Biology, 2018, 13, 1551-1559.	3.4	34
17	A single β-octyl glucoside molecule induces HIV-1 Nef dimer formation in the absence of partner protein binding. PLoS ONE, 2018, 13, e0192512.	2.5	8
18	Exploring the Mechanisms by which Small Molecule Nef Inhibitors Suppress HIVâ€1 Infectivity. FASEB Journal, 2018, 32, 830.4.	0.5	0

#	Article	IF	CITATIONS
19	Nek7 Protects Telomeres from Oxidative DNA Damage by Phosphorylation and Stabilization of TRF1. Molecular Cell, 2017, 65, 818-831.e5.	9.7	44
20	Cell-based Fluorescence Complementation Reveals a Role for HIV-1 Nef Protein Dimerization in AP-2 Adaptor Recruitment and CD4 Co-receptor Down-regulation. Journal of Biological Chemistry, 2017, 292, 2670-2678.	3.4	17
21	Csk-homologous kinase (Chk) is an efficient inhibitor of Src-family kinases but a poor catalyst of phosphorylation of their C-terminal regulatory tyrosine. Cell Communication and Signaling, 2017, 15, 29.	6.5	10
22	Pharmacologic HIV-1 Nef blockade promotes CD8 T cell–mediated elimination of latently HIV-1–infected cells in vitro. JCI Insight, 2017, 2, .	5.0	34
23	Dual inhibition of Fes and Flt3 tyrosine kinases potently inhibits Flt3-ITD+ AML cell growth. PLoS ONE, 2017, 12, e0181178.	2.5	15
24	Dynamics of the <scp>T</scp> ecâ€family tyrosine kinase <scp>SH</scp> 3 domains. Protein Science, 2016, 25, 852-864.	7.6	8
25	Hydrogen Exchange Mass Spectrometry of Related Proteins with Divergent Sequences: A Comparative Study of HIV-1 Nef Allelic Variants. Journal of the American Society for Mass Spectrometry, 2016, 27, 1048-1061.	2.8	11
26	c-Abl Tyrosine Kinase Adopts Multiple Active Conformational States in Solution. Biochemistry, 2016, 55, 3251-3260.	2.5	8
27	Synthesis and evaluation of orally active small molecule HIV-1 Nef antagonists. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1480-1484.	2.2	16
28	Subtle Dynamic Changes Accompany Hck Activation by HIV-1 Nef and are Reversed by an Antiretroviral Kinase Inhibitor. Biochemistry, 2015, 54, 6382-6391.	2.5	12
29	Fluorescence Polarization Screening Assays for Small Molecule Allosteric Modulators of ABL Kinase Function. PLoS ONE, 2015, 10, e0133590.	2.5	10
30	Membrane-Associated Conformation of HIV-1 Nef Investigated with Hydrogen Exchange Mass Spectrometry at a Langmuir Monolayer. Analytical Chemistry, 2015, 87, 7030-7035.	6.5	14
31	MCPIP1 Endoribonuclease Activity Negatively Regulates Interleukin-17-Mediated Signaling and Inflammation. Immunity, 2015, 43, 475-487.	14.3	125
32	A Discovery Strategy for Selective Inhibitors of c‣rc in Complex with the Focal Adhesion Kinase SH3/SH2â€binding Region. Chemical Biology and Drug Design, 2015, 86, 144-155.	3.2	10
33	Human trophoblasts confer resistance to viruses implicated in perinatal infection. American Journal of Obstetrics and Gynecology, 2015, 212, 71.e1-71.e8.	1.3	92
34	Differential Sensitivity of Src-Family Kinases to Activation by SH3 Domain Displacement. PLoS ONE, 2014, 9, e105629.	2.5	35
35	Development and Validation of a High-Content Bimolecular Fluorescence Complementation Assay for Small-Molecule Inhibitors of HIV-1 Nef Dimerization. Journal of Biomolecular Screening, 2014, 19, 556-565.	2.6	20
36	Src-family tyrosine kinase activities are essential for differentiation of human embryonic stem cells. Stem Cell Research, 2014, 13, 379-389.	0.7	31

#	Article	IF	CITATIONS
37	Synthesis and structure–activity analysis of diphenylpyrazolodiazene inhibitors of the HIV-1 Nef virulence factor. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1702-1706.	2.2	15
38	Interaction with the Src Homology (SH3-SH2) Region of the Src-family Kinase Hck Structures the HIV-1 Nef Dimer for Kinase Activation and Effector Recruitment. Journal of Biological Chemistry, 2014, 289, 28539-28553.	3.4	38
39	The Accessory Factor Nef Links HIV-1 to Tec/Btk Kinases in an Src Homology 3 Domain-dependent Manner. Journal of Biological Chemistry, 2014, 289, 15718-15728.	3.4	28
40	c-Yes Tyrosine Kinase Is a Potent Suppressor of ES Cell Differentiation and Antagonizes the Actions of Its Closest Phylogenetic Relative, c-Src. ACS Chemical Biology, 2014, 9, 139-146.	3.4	17
41	Individual Src-family tyrosine kinases direct the degradation or protection of the clock protein Timeless via differential ubiquitylation. Cellular Signalling, 2013, 25, 860-866.	3.6	5
42	Effector Kinase Coupling Enables High-Throughput Screens for Direct HIV-1 Nef Antagonists with Antiretroviral Activity. Chemistry and Biology, 2013, 20, 82-91.	6.0	51
43	Small molecule inhibitors of the HIV-1 virulence factor, Nef. Drug Discovery Today: Technologies, 2013, 10, e523-e529.	4.0	29
44	Discovery of a diaminoquinoxaline benzenesulfonamide antagonist of HIV-1 Nef function using a yeast-based phenotypic screen. Retrovirology, 2013, 10, 135.	2.0	21
45	Structure and Dynamic Regulation of Abl Kinases*. Journal of Biological Chemistry, 2013, 288, 5443-5450.	3.4	89
46	Enhanced SH3/Linker Interaction Overcomes Abl Kinase Activation by Gatekeeper and Myristic Acid Binding Pocket Mutations and Increases Sensitivity to Small Molecule Inhibitors*. Journal of Biological Chemistry, 2013, 288, 6116-6129.	3.4	29
47	Partial cooperative unfolding in proteins as observed by hydrogen exchange mass spectrometry. International Reviews in Physical Chemistry, 2013, 32, 96-127.	2.3	36
48	Nef Alleles from All Major HIV-1 Clades Activate Src-Family Kinases and Enhance HIV-1 Replication in an Inhibitor-Sensitive Manner. PLoS ONE, 2012, 7, e32561.	2.5	33
49	Small-Molecule Inhibitors of the c-Fes Protein-Tyrosine Kinase. Chemistry and Biology, 2012, 19, 529-540.	6.0	32
50	HIV-1 Nef interaction influences the ATP-binding site of the Src-family kinase, Hck. BMC Chemical Biology, 2012, 12, 1.	1.6	18
51	The contrasting oncogenic and tumor suppressor roles of FES. Frontiers in Bioscience - Scholar, 2012, S4, 489.	2.1	4
52	On the Solution Conformation and Dynamics of the HIV-1 Viral Infectivity Factor. Journal of Molecular Biology, 2011, 410, 1008-1022.	4.2	25
53	Structure and regulation of the c-Fes protein-tyrosine kinase. Frontiers in Bioscience - Landmark, 2011, 16, 3146.	3.0	6
54	An Unexpected Role for the Clock Protein Timeless in Developmental Apoptosis. PLoS ONE, 2011, 6, e17157.	2.5	13

#	Article	IF	CITATIONS
55	Small Molecule Inhibition of HIV-1–Induced MHC-I Down-Regulation Identifies a Temporally Regulated Switch in Nef Action. Molecular Biology of the Cell, 2010, 21, 3279-3292.	2.1	58
56	Expression of a Src Family Kinase in Chronic Myelogenous Leukemia Cells Induces Resistance to Imatinib in a Kinase-dependent Manner. Journal of Biological Chemistry, 2010, 285, 21446-21457.	3.4	57
57	Crystal Structure of the Src Family Kinase Hck SH3-SH2 Linker Regulatory Region Supports an SH3-dominant Activation Mechanism. Journal of Biological Chemistry, 2010, 285, 35455-35461.	3.4	27
58	Conformational disturbance in Abl kinase upon mutation and deregulation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1386-1391.	7.1	68
59	Chemical Genetics Identifies c-Src as an Activator of Primitive Ectoderm Formation in Murine Embryonic Stem Cells. Science Signaling, 2009, 2, ra64.	3.6	26
60	Promoter methylation blocks FES proteinâ€ŧyrosine kinase gene expression in colorectal cancer. Genes Chromosomes and Cancer, 2009, 48, 272-284.	2.8	18
61	Bimolecular Fluorescence Complementation Demonstrates That the c-Fes Proteinâ^Tyrosine Kinase Forms Constitutive Oligomers in Living Cells. Biochemistry, 2009, 48, 4780-4788.	2.5	8
62	Chemical Library Screens Targeting an HIV-1 Accessory Factor/Host Cell Kinase Complex Identify Novel Antiretroviral Compounds. ACS Chemical Biology, 2009, 4, 939-947.	3.4	64
63	HIV-1 Nef Dimerization Is Required for Nef-Mediated Receptor Downregulation and Viral Replication. Journal of Molecular Biology, 2009, 394, 329-342.	4.2	68
64	Downregulation of the c-Fes protein-tyrosine kinase inhibits the proliferation of human renal carcinoma cells. International Journal of Oncology, 2009, 34, 89-96.	3.3	6
65	Functional Characterization and Conformational Analysis of the Herpesvirus saimiri Tip-C484 Protein. Journal of Molecular Biology, 2007, 366, 1282-1293.	4.2	21
66	Allosteric Loss-of-function Mutations in HIV-1 Nef from a Long-term Non-progressor. Journal of Molecular Biology, 2007, 374, 121-129.	4.2	34
67	Non-receptor protein-tyrosine kinases as molecular targets for antiangiogenic therapy (Review). International Journal of Molecular Medicine, 2007, 20, 113-21.	4.0	32
68	Conformational Features of the Full-Length HIV and SIV Nef Proteins Determined by Mass Spectrometryâ€. Biochemistry, 2006, 45, 7733-7739.	2.5	23
69	The KRAB-associated co-repressor KAP-1 is a coiled-coil binding partner, substrate and activator of the c-Fes protein tyrosine kinase. Biochemical Journal, 2006, 399, 141-150.	3.7	6
70	An examination of dynamics crosstalk between SH2 and SH3 domains by hydrogen/deuterium exchange and mass spectrometry. Protein Science, 2006, 15, 65-73.	7.6	42
71	C-terminal Src Kinase-homologous Kinase (CHK), a Unique Inhibitor Inactivating Multiple Active Conformations of Src Family Tyrosine Kinases. Journal of Biological Chemistry, 2006, 281, 32988-32999.	3.4	40
72	A Growth-suppressive Function for the c-Fes Protein-Tyrosine Kinase in Colorectal Cancer. Journal of Biological Chemistry, 2006, 281, 8829-8835.	3.4	30

#	Article	IF	CITATIONS
73	Src Family Kinases Phosphorylate the Bcr-Abl SH3-SH2 Region and Modulate Bcr-Abl Transforming Activity. Journal of Biological Chemistry, 2006, 281, 30907-30916.	3.4	112
74	HIV-1 Nef Selectively Activates Src Family Kinases Hck, Lyn, and c-Src through Direct SH3 Domain Interaction. Journal of Biological Chemistry, 2006, 281, 27029-27038.	3.4	130
75	Differential Regulation of Src Family Kinases by HIVâ€1 Nef. FASEB Journal, 2006, 20, A925.	0.5	Ο
76	Activation of the Src Family Kinase Hck without SH3-Linker Release. Journal of Biological Chemistry, 2005, 280, 40832-40837.	3.4	41
77	Src Family Kinase Activity Is Required for Murine Embryonic Stem Cell Growth and Differentiation. Molecular Pharmacology, 2005, 68, 1320-1330.	2.3	74
78	The Human c-Fes Tyrosine Kinase Binds Tubulin and Microtubules through Separate Domains and Promotes Microtubule Assembly. Molecular and Cellular Biology, 2004, 24, 9351-9358.	2.3	57
79	Oligomerization Is Required for HIV-1 Nef-Induced Activation of the Src Family Protein-Tyrosine Kinase, Hckâ€. Biochemistry, 2004, 43, 15775-15784.	2.5	35
80	The c-Fes tyrosine kinase cooperates with the breakpoint cluster region protein (Bcr) to induce neurite extension in a Rac- and Cdc42-dependent manner. Experimental Cell Research, 2004, 299, 188-198.	2.6	21
81	Conserved Residues in the HIV-1 Nef Hydrophobic Pocket are Essential for Recruitment and Activation of the Hck Tyrosine Kinase. Journal of Molecular Biology, 2004, 343, 1255-1268.	4.2	34
82	HIV-1 Nef Alleles Show Differential Activation of Hematopoietic Cell Kinase in a Yeast Model System Blood, 2004, 104, 3107-3107.	1.4	0
83	The c-Fes protein-tyrosine kinase accelerates NGF-induced differentiation of PC12 cells through a PI3K-dependent mechanism. Cellular Signalling, 2003, 15, 279-288.	3.6	21
84	Regulation of c-Fes Tyrosine Kinase Activity by Coiled-Coil and SH2 Domains:  Analysis with Saccharomyces cerevisiae. Biochemistry, 2003, 42, 3567-3574.	2.5	24
85	Activation of STAT3 by the Src Family Kinase Hck Requires a Functional SH3 Domain. Journal of Biological Chemistry, 2002, 277, 45680-45687.	3.4	142
86	Selective pyrrolo-pyrimidine inhibitors reveal a necessary role for Src family kinases in Bcr–Abl signal transduction and oncogenesis. Oncogene, 2002, 21, 8075-8088.	5.9	129
87	SH3-dependent stimulation of Src-family kinase autophosphorylation without tail release from the SH2 domain in vivo. , 2002, 9, 365-9.		66
88	The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO Journal, 2002, 21, 5766-5774.	7.8	186
89	Intramolecular Binding of a Proximal PP _{II} Helix to an SH3 Domain in the Fusion Protein SH3 _{Hck} : PP _{II} _{hGAP} . Cell Biochemistry and Biophysics, 2001, 35, 115-126.	1.8	19
90	Involvement of Jak2 tyrosine phosphorylation in Bcr–Abl transformation. Oncogene, 2001, 20, 6188-6195.	5.9	133

#	Article	IF	CITATIONS
91	A Point Mutation in the N-Terminal Coiled-Coil Domain Releases c-Fes Tyrosine Kinase Activity and Survival Signaling in Myeloid Leukemia Cells. Molecular and Cellular Biology, 2001, 21, 6170-6180.	2.3	45
92	HIV-1 Nef Promotes Survival of Myeloid Cells by a Stat3-dependent Pathway. Journal of Biological Chemistry, 2001, 276, 25605-25611.	3.4	70
93	Control of myeloid differentiation and survival by Stats. Oncogene, 2000, 19, 2612-2618.	5.9	132
94	The Nonreceptor Protein-tyrosine Kinase c-Fes Is Involved in Fibroblast Growth Factor-2-induced Chemotaxis of Murine Brain Capillary Endothelial Cells. Journal of Biological Chemistry, 2000, 275, 10105-10111.	3.4	57
95	Affinity of Src Family Kinase SH3 Domains for HIV Nef in Vitro Does Not Predict Kinase Activation by Nef in Vivo. Biochemistry, 2000, 39, 489-495.	2.5	29
96	Dynamics of the Hckâ€SH3 domain: Comparison of experiment with multiple molecular dynamics simulations. Protein Science, 2000, 9, 95-103.	7.6	20
97	SH2-Kinase Linker Mutations Release Hck Tyrosine Kinase and Transforming Activities in Rat-2 Fibroblasts. Journal of Biological Chemistry, 1999, 274, 26579-26583.	3.4	51
98	Regulation of c-Fes Tyrosine Kinase and Biological Activities by N-Terminal Coiled-Coil Oligomerization Domains. Molecular and Cellular Biology, 1999, 19, 8335-8343.	2.3	38
99	The Role of NeuroD as a Differentiation Factor in the Mammalian Retina. Journal of Molecular Neuroscience, 1998, 11, 165-178.	2.3	44
100	Fibroblast Transformation by Fps/Fes Tyrosine Kinases Requires Ras, Rac, and Cdc42 and Induces Extracellular Signal-regulated and c-Jun N-terminal Kinase Activation. Journal of Biological Chemistry, 1998, 273, 13828-13834.	3.4	38
101	The c-Fes Family of Protein-Tyrosine Kinases. Critical Reviews in Oncogenesis, 1998, 9, 43-62.	0.4	57
102	SH3-mediated Hck Tyrosine Kinase Activation and Fibroblast Transformation by the Nef Protein of HIV-1. Journal of Biological Chemistry, 1997, 272, 17899-17902.	3.4	180
103	Identification and Localization of Slow, Natural, Cooperative Unfolding in the Hematopoietic Cell Kinase SH3 Domain by Amide Hydrogen Exchange and Mass Spectrometryâ€. Biochemistry, 1997, 36, 14384-14391.	2.5	88
104	Autophosphorylation of the Fes Tyrosine Kinase. Journal of Biological Chemistry, 1996, 271, 17519-17525.	3.4	56
105	Construction of a cDNA for the human c-fes protooncogene protein-tyrosine kinase and its expression in a baculovirus system. Biochemistry, 1992, 31, 4828-4833.	2.5	8
106	Stimulation of the phosphorylation of uridine in skeletal muscle by insulin and vanadate. Molecular and Cellular Biochemistry, 1990, 93, 13-9.	3.1	6