Oliver Benson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11404661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coherent interaction of atoms with a beam of light confined in a light cage. Light: Science and Applications, 2021, 10, 114.	16.6	16
2	Hybrid integrated quantum photonic circuits. Nature Photonics, 2020, 14, 285-298.	31.4	411
3	Hybrid light collection. Semiconductors and Semimetals, 2020, 103, 257-275.	0.7	0
4	Quantum Networks Based on Single Photons. Springer Series in Solid-state Sciences, 2020, , 361-390.	0.3	0
5	Slow and fast single photons from a quantum dot interacting with the excited state hyperfine structure of the Cesium D1-line. Scientific Reports, 2019, 9, 13728.	3.3	13
6	On-chip integration of single solid-state quantum emitters with a SiO ₂ photonic platform. New Journal of Physics, 2019, 21, 045007.	2.9	20
7	A Numerical Study of Plasmonic Nanostructures for Linear and Nonlinear Quantum Elements. , 2019, , 133-155.		2
8	Accurate placement of single nanoparticles on opaque conductive structures. Applied Physics Letters, 2018, 113, .	3.3	14
9	Coupling a Single Nitrogen-Vacancy Center in Nanodiamond to Superparamagnetic Nanoparticles. Scientific Reports, 2018, 8, 8430.	3.3	15
10	Fiber-Coupled Diamond Micro-Waveguides toward an Efficient Quantum Interface for Spin Defect Centers. ACS Omega, 2017, 2, 7194-7202.	3.5	13
11	Bright source of indistinguishable photons based on cavity-enhanced parametric down-conversion utilizing the cluster effect. Applied Physics Letters, 2016, 108, .	3.3	19
12	A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures. Scientific Reports, 2016, 6, 28877.	3.3	37
13	A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	4
14	Establishing Quantum Hybrid Systems with Tailored Photons. , 2016, , .		0
15	Micro-concave waveguide antenna for high photon extraction from nitrogen vacancy centers in nanodiamond. Scientific Reports, 2015, 5, 12013.	3.3	11
16	Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity. Scientific Reports, 2015, 5, 9619.	3.3	51
17	Ultra-widely tunable nanofiber Bragg cavities for quantum optics. , 2015, , .		0
18	On-Demand Electrostatic Coupling of Individual Precharacterized Nano- and Microparticles in a Segmented Paul Trap. Nano Letters, 2015, 15, 1993-2000.	9.1	12

#	Article	IF	CITATIONS
19	Investigation of Line Width Narrowing and Spectral Jumps of Single Stable Defect Centers in ZnO at Cryogenic Temperature. Nano Letters, 2015, 15, 3024-3029.	9.1	35
20	Miniaturized Bragg-grating couplers for SiN-photonic crystal slabs. Optics Express, 2015, 23, 9803.	3.4	7
21	Strategies for optical integration of single-photon sources. Proceedings of SPIE, 2015, , .	0.8	2
22	Direct laser writing aligned with nano-diamonds containing NV-centers as single-photon emitters. , 2015, , .		0
23	Photon Counting and Timing in Quantum Optics Experiments. Springer Series on Fluorescence, 2014, , 319-341.	0.8	1
24	Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution. New Journal of Physics, 2014, 16, 023021.	2.9	91
25	Numerical analysis of efficient light extraction with an elliptical solid immersion lens. Optics Letters, 2014, 39, 4639.	3.3	11
26	Deterministic and robust entanglement of nitrogen-vacancy centers using low- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi>photonic-crystal cavities. Physical Review A, 2014, 89, .</mml:math 	2.5	15
27	Nitrogen vacancy center fluorescence from a submicron diamond cluster levitated in a linear quadrupole ion trap. Applied Physics Letters, 2014, 105, .	3.3	50
28	Laser-written parabolic micro-antennas for efficient photon collection. Applied Physics Letters, 2014, 105, .	3.3	19
29	Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity. Applied Physics Letters, 2014, 105, 073113.	3.3	50
30	On-Chip Integration of NV Centers in Three-Dimensional Laser-Written Microstructures for Single Photon Applications. , 2014, , .		0
31	Thermo-optical response of photonic crystal cavities operating in the visible spectral range. Nanotechnology, 2013, 24, 315204.	2.6	5
32	Quantum Zeno phenomenon on a single solid-state spin. Physical Review A, 2013, 88, .	2.5	38
33	Silica-coated Au/Ag nanorods with tunable surface plasmon bands for nanoplasmonics with single particles. Colloid and Polymer Science, 2013, 291, 585-594.	2.1	14
34	Measurement of the Ultrafast Spectral Diffusion of the Optical Transition of Nitrogen Vacancy Centers in Nano-Size Diamond Using Correlation Interferometry. Physical Review Letters, 2013, 110, 027401.	7.8	90
35	Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures. Scientific Reports, 2013, 3, 1577.	3.3	93
36	In Situ Observation of Plasmon Tuning in a Single Gold Nanoparticle during Controlled Melting. Nano Letters, 2013, 13, 2041-2046.	9.1	44

#	Article	IF	CITATIONS
37	Design and numerical optimization of an easy-to-fabricate photon-to-plasmon coupler for quantum plasmonics. Applied Physics Letters, 2013, 102, .	3.3	12
38	A monolithic polarization-independent frequency-filter system for filtering of photon pairs. Applied Physics Letters, 2013, 103, .	3.3	11
39	Single photon nanophotonics using NV centers in three-dimensional laser-written microstructures. , 2013, , .		0
40	Fine-tuning of whispering gallery modes in on-chip silica microdisk resonators within a full spectral range. Applied Physics Letters, 2013, 102, .	3.3	16
41	Demonstration of the quantum Zeno effect on the nitrogen vacancy center in nanodiamond. , 2013, , .		0
42	Nanophotonics with Single Photons from NV Centers in Three-Dimensional Laser-Written Microstructures. , 2013, , .		0
43	Integrated and compact fiber-coupled single-photon system based on nitrogen-vacancy centers and gradient-index lenses. Optics Letters, 2012, 37, 2901.	3.3	3
44	A nanodiamond-tapered fiber system with high single-mode coupling efficiency. Optics Express, 2012, 20, 10490.	3.4	90
45	Incoherent photon conversion in selectively infiltrated hollow-core photonic crystal fibers for single photon generation in the near infrared. Optics Express, 2012, 20, 11536.	3.4	4
46	Measuring the quantum nature of light with a single source and a single detector. Physical Review A, 2012, 86, .	2.5	16
47	Addendum: "An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements―[Appl. Phys. Lett. 98, 171105 (2011)]. Applied Physics Letters, 2012, 101, 159901.	3.3	4
48	Near-field coupling of a single NV center to a tapered fiber. Proceedings of SPIE, 2012, , .	0.8	0
49	Coupling of single nitrogenâ€vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities. Physica Status Solidi (B): Basic Research, 2012, 249, 918-924.	1.5	36
50	Processing of photonic crystal nanocavity for quantum information in diamond. Diamond and Related Materials, 2011, 20, 937-943.	3.9	62
51	Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens. New Journal of Physics, 2011, 13, 055017.	2.9	107
52	Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures. Optics Express, 2011, 19, 7914.	3.4	73
53	Assembly of hybrid photonic architectures from nanophotonic constituents. Nature, 2011, 480, 193-199.	27.8	327
54	Fiber-Integrated Diamond-Based Single Photon Source. Nano Letters, 2011, 11, 198-202.	9.1	133

#	Article	IF	CITATIONS
55	Integrated photonic quantum technologies with fiber-integrated single photon emitters. , 2011, , .		Ο
56	An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements. Applied Physics Letters, 2011, 98, .	3.3	145
57	A scanning probe-based pick-and-place procedure for assembly of integrated quantum optical hybrid devices. Review of Scientific Instruments, 2011, 82, 073709.	1.3	81
58	Nanophotonics with Microsphere Resonators. , 2010, , 5'Ä,ì1-5'Ä,ì28.		1
59	Entangled Photons from a Lightâ€Emitting Diode. ChemPhysChem, 2010, 11, 3395-3397.	2.1	0
60	Controlled coupling of NV defect centers to plasmonic and photonic nanostructures. Journal of Luminescence, 2010, 130, 1628-1634.	3.1	33
61	Generalized measurements for optimally discriminating two mixed states and their linear-optical implementation. Journal of Modern Optics, 2010, 57, 188-197.	1.3	7
62	Room-temperature single-photon sources: design, performance, and applications. Proceedings of SPIE, 2010, , .	0.8	0
63	Plasmon-Enhanced Upconversion in Single NaYF ₄ :Yb ³⁺ /Er ³⁺ Codoped Nanocrystals. Nano Letters, 2010, 10, 134-138.	9.1	444
64	Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling. Nano Letters, 2010, 10, 891-895.	9.1	180
65	Plasmonic-photonic hybrid cavity for tailored light-matter coupling. Proceedings of SPIE, 2010, , .	0.8	1
66	Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Applied Physics Letters, 2010, 97, 141108.	3.3	219
67	Assembly of fundamental photonic elements from single nanodiamonds. , 2010, , .		0
68	Fluid-Filled Optical Fibers. , 2010, , 15-1-15-34.		1
69	On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator. Applied Physics Letters, 2009, 95, 153110.	3.3	33
70	Coupling single NV-centres to high-Qwhispering gallery modes of a preselected frequency-matched microresonator. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 114001.	1.5	30
71	A hybrid approach towards nanophotonic devices with enhanced functionality. Physica Status Solidi (B): Basic Research, 2009, 246, 298-301.	1.5	10
72	Plasmon-Enhanced Single Photon Emission from a Nanoassembled Metalâ^'Diamond Hybrid Structure at Room Temperature. Nano Letters, 2009, 9, 1694-1698.	9.1	354

#	Article	IF	CITATIONS
73	Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity. Optics Letters, 2009, 34, 1108.	3.3	101
74	Observation of Size Dependence in Multicolor Upconversion in Single Yb ³⁺ , Er ³⁺ Codoped NaYF ₄ Nanocrystals. Nano Letters, 2009, 9, 2477-2481.	9.1	173
75	Highly efficient fluorescence sensing with hollow core photonic crystal fibers. , 2008, , .		0
76	One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator. Nano Letters, 2008, 8, 3911-3915.	9.1	121
77	Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities. Applied Physics Letters, 2008, 93, 021112.	3.3	46
78	Single Photons from Single Quantum Dots — New Light for Quantum Information Processing. , 2008, , 3-15.		2
79	Single-Photon Generation from Single Quantum Dots. Nanoscience and Technology, 2008, , 329-349.	1.5	0
80	Selectively Infiltrated Photonic Crystal Fibers for Fluorescence Sensing. , 2007, , .		0
81	Manipulation of Dielectric Particles Using Photonic Crystal Cavities. , 2007, , .		1
82	Highly efficient fluorescence sensing with hollow core photonic crystal fibers. Optics Express, 2007, 15, 12783.	3.4	112
83	Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities. Optics Express, 2007, 15, 17231.	3.4	65
84	InP/GaInP Quantum Dots as Single-Photon Sources for Quantum Information Processing. Proceedings of the IEEE, 2007, 95, 1791-1804.	21.3	5
85	Selectively coated photonic crystal fiber for highly sensitive fluorescence detection. Applied Physics Letters, 2007, 90, 111101.	3.3	47
86	Non-Classical Light from Artificial Atoms. Advances in Atomic, Molecular and Optical Physics, 2006, 53, 1-32.	2.3	1
87	Manipulation of dielectric particles using photonic crystal cavities. Applied Physics Letters, 2006, 89, 253114.	3.3	69
88	Multiplexed quantum cryptography with single InP quantum dots. , 2005, , .		3
89	CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core?Shell?Shell Nanocrystals ChemInform, 2005, 36, no.	0.0	0
90	Separating cascaded photons from a single quantum dot: Demonstration of multiplexed quantum cryptography. Physical Review B, 2004, 70, .	3.2	19

#	Article	IF	CITATIONS
91	Quantum optics with single quantum dot devices. New Journal of Physics, 2004, 6, 96-96.	2.9	38
92	CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Coreâ^'Shellâ^'Shell Nanocrystals. Journal of Physical Chemistry B, 2004, 108, 18826-18831.	2.6	688
93	Highly Emissive Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality. Nano Letters, 2003, 3, 1677-1681.	9.1	579
94	Regulated Single Photons and Entangled Photons From a Quantum Dot Microcavity. Nanoscience and Technology, 2002, , 277-305.	1.5	0
95	Regulated and Entangled Photons from a Single Quantum Dot. Physical Review Letters, 2000, 84, 2513-2516.	7.8	884
96	Master-equation model of a single-quantum-dot microsphere laser. Physical Review A, 1999, 59, 4756-4763.	2.5	65