Jeong Jae Wie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1140276/publications.pdf Version: 2024-02-01

LEONG LAF WIE

#	Article	IF	CITATIONS
1	Lightâ€Fueled Climbing of Monolithic Torsional Soft Robots via Molecular Engineering. Advanced Intelligent Systems, 2022, 4, 2100148.	6.1	13
2	Toxic Gas-Free Synthesis of Extremely Negative Triboelectric Sulfur Copolymer Blends Via Phase Separation of Fluorine-Rich Polymers. Nano Energy, 2022, 92, 106761.	16.0	10
3	Programmable Stepwise Collective Magnetic Self-Assembly of Micropillar Arrays. ACS Nano, 2022, 16, 3152-3162.	14.6	18
4	Agile Underwater Swimming of Magnetic Polymeric Microrobots in Viscous Solutions. Advanced Intelligent Systems, 2022, 4, .	6.1	8
5	Height-Tunable Replica Molding Using Viscous Polymeric Resins. ACS Macro Letters, 2022, 11, 428-433.	4.8	0
6	Highly durable direct-current power generation in polarity-controlled and soft-triggered rotational triboelectric nanogenerator. Applied Energy, 2022, 314, 119006.	10.1	12
7	High crystallinity of tunicate cellulose nanofibers for high-performance engineering films. Carbohydrate Polymers, 2021, 254, 117470.	10.2	22
8	3D-structured organic-inorganic hybrid solid-electrolyte-interface layers for Lithium metal anode. Energy Storage Materials, 2021, 37, 567-575.	18.0	21
9	Continuous and programmable photomechanical jumping of polymer monoliths. Materials Today, 2021, 49, 97-106.	14.2	55
10	Photoâ€Triggered Shape Reconfiguration in Stretchable Reduced Graphene Oxideâ€Patterned Azobenzeneâ€Functionalized Liquid Crystalline Polymer Networks. Advanced Functional Materials, 2021, 31, 2102106.	14.9	14
11	Fabrication and applications of stimuliâ€responsive micro/nanopillar arrays. Journal of Polymer Science, 2021, 59, 1491-1517.	3.8	17
12	Programmable Liquid Crystal Defect Arrays via Electric Field Modulation for Mechanically Functional Liquid Crystal Networks. ACS Applied Materials & Interfaces, 2021, 13, 36253-36261.	8.0	15
13	Intermolecular Interactions and Intramolecular Motions in Photomechanical Effect: Nonlinear Thermo- and Photomechanical Behaviors of Azobenzene-Functionalized Amide–Imide Block Copolymers. ACS Applied Materials & Interfaces, 2021, 13, 48127-48140.	8.0	8
14	A photolithographic method for fabricating electron devices based on MOCVD-grown MoS2. Chemical Engineering Journal, 2020, 382, 122944.	12.7	3
15	Light-driven complex 3D shape morphing of glassy polymers by resolving spatio-temporal stress confliction. Scientific Reports, 2020, 10, 10840.	3.3	5
16	High-Speed Production of Crystalline Semiconducting Polymer Line Arrays by Meniscus Oscillation Self-Assembly. ACS Nano, 2020, 14, 17254-17261.	14.6	10
17	Programmable Building Blocks via Internal Stress Engineering for 3D Collective Assembly. Advanced Materials Technologies, 2020, 5, 2000758.	5.8	4
18	Enhancement of Magnetoâ€Mechanical Actuation of Micropillar Arrays by Anisotropic Stress Distribution. Small, 2020, 16, e2003179.	10.0	20

Jeong Jae Wie

#	Article	IF	CITATIONS
19	Nano-patching defects of reduced graphene oxide by cellulose nanocrystals in scalable polymer nanocomposites. Carbon, 2020, 165, 18-25.	10.3	13
20	Shape-Programmed Fabrication and Actuation of Magnetically Active Micropost Arrays. ACS Applied Materials & amp; Interfaces, 2020, 12, 17113-17120.	8.0	44
21	Ecoâ€Degradable and Flexible Solidâ€State Ionic Conductors by Clayâ€Nanoconfined DMSO Composites. Advanced Sustainable Systems, 2020, 4, 1900134.	5.3	10
22	Effects of Helix Geometry on Magnetic Guiding of Helical Polymer Composites on a Gastric Cancer Model: A Feasibility Study. Materials, 2020, 13, 1014.	2.9	6
23	Multifunctional Three-Dimensional Curvilinear Self-Folding of Glassy Polymers. Journal of Micro and Nano-Manufacturing, 2020, 8, .	0.7	2
24	Thermal and Mechanical Properties of Polypropylene/Cellulose Nanofiber Composites. Porrime, 2020, 44, 255-263.	0.2	4
25	Analysis of Mechanical Properties in Thermoplastic Polyurethane-Microcrystalline Cellulose Composites. Porrime, 2020, 44, 776-783.	0.2	1
26	Naturally Derived Melanin Nanoparticle Composites with High Electrical Conductivity and Biodegradability. Particle and Particle Systems Characterization, 2019, 36, 1900166.	2.3	28
27	Rational molecular design of polymeric materials toward efficient triboelectric energy harvesting. Nano Energy, 2019, 66, 104158.	16.0	32
28	On-demand orbital maneuver of multiple soft robots via hierarchical magnetomotility. Nature Communications, 2019, 10, 4751.	12.8	48
29	Contactless Manipulation of Soft Robots. Materials, 2019, 12, 3065.	2.9	34
30	Three-dimensional micropatterning of semiconducting polymers <i>via</i> capillary force-assisted evaporative self-assembly. Soft Matter, 2019, 15, 3854-3863.	2.7	10
31	Magnetomotility of untethered helical soft robots. RSC Advances, 2019, 9, 11272-11280.	3.6	39
32	Introduction of primary chemical bonding in lignin-based PP composites for mechanical reinforcement via reactive extrusion. Composites Part B: Engineering, 2019, 165, 510-515.	12.0	16
33	Nanoconfinement effects of chemically reduced graphene oxide nanoribbons on poly(vinyl chloride). Nanoscale, 2018, 10, 2025-2033.	5.6	14
34	Soft electronics on asymmetrical porous conducting membranes by molecular layer-by-layer assembly. Sensors and Actuators B: Chemical, 2018, 254, 916-925.	7.8	17
35	The contribution of hydrogen bonding to the photomechanical response of azobenzene-functionalized polyamides. Journal of Materials Chemistry C, 2018, 6, 5964-5974.	5.5	32
36	Nanoarchitecturing of Natural Melanin Nanospheres by Layer-by-Layer Assembly: Macroscale Anti-inflammatory Conductive Coatings with Optoelectronic Tunability. Biomacromolecules, 2017, 18, 1908-1917.	5.4	39

Jeong Jae Wie

#	Article	IF	CITATIONS
37	A nanostructured cell-free photosynthetic biocomposite via molecularly controlled layer-by-layer assembly. Sensors and Actuators B: Chemical, 2017, 244, 1-10.	7.8	18
38	Reconfigurable Antennas Based on Self-Morphing Liquid Crystalline Elastomers. IEEE Access, 2016, 4, 2340-2348.	4.2	26
39	Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints. Nanoscale, 2016, 8, 12900-12909.	5.6	35
40	Photomotility of polymers. Nature Communications, 2016, 7, 13260.	12.8	189
41	Correction: Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints. Nanoscale, 2016, 8, 13079-13079.	5.6	0
42	High-Fidelity Replica Molding of Glassy Liquid Crystalline Polymer Microstructures. ACS Applied Materials & Interfaces, 2016, 8, 8110-8117.	8.0	18
43	Novel reconfigurable antennas using Liquid Crystals Elastomers. , 2015, , .		4
44	Energy Storage: Reversibly Compressible, Highly Elastic, and Durable Graphene Aerogels for Energy Storage Devices under Limiting Conditions (Adv. Funct. Mater. 7/2015). Advanced Functional Materials, 2015, 25, 1159-1159.	14.9	2
45	Twists and Turns in Glassy, Liquid Crystalline Polymer Networks. Macromolecules, 2015, 48, 1087-1092.	4.8	89
46	Reversibly Compressible, Highly Elastic, and Durable Graphene Aerogels for Energy Storage Devices under Limiting Conditions. Advanced Functional Materials, 2015, 25, 1053-1062.	14.9	143
47	Voxelated liquid crystal elastomers. Science, 2015, 347, 982-984.	12.6	863
48	Manipulating the glass transition behavior of sulfonated polystyrene by functionalized nanoparticle inclusion. Nanoscale, 2015, 7, 8864-8872.	5.6	13
49	Chemical modification of graphene aerogels for electrochemical capacitor applications. Physical Chemistry Chemical Physics, 2015, 17, 30946-30962.	2.8	74
50	Thermally and Optically Fixable Shape Memory in Azobenzene-Functionalized Glassy Liquid Crystalline Polymer Networks. Molecular Crystals and Liquid Crystals, 2014, 596, 113-121.	0.9	15
51	Photopiezoelectric Composites of Azobenzeneâ€Functionalized Polyimides and Polyvinylidene Fluoride. Macromolecular Rapid Communications, 2014, 35, 2050-2056.	3.9	21
52	Shear-Induced Solution Crystallization of Poly(3-hexylthiophene) (P3HT). Macromolecules, 2014, 47, 3343-3349.	4.8	35
53	Anomalous nanoinclusion effects of 2D MoS2 and WS2 nanosheets on the mechanical stiffness of polymer nanocomposites. Nanoscale, 2014, 6, 7430.	5.6	104
54	Azobenzene-functionalized polyimides as wireless actuators. Polymer, 2014, 55, 5915-5923.	3.8	26

JEONG JAE WIE

#	Article	IF	CITATIONS
55	Impact of Backbone Rigidity on the Photomechanical Response of Glassy, Azobenzene-Functionalized Polyimides. Macromolecules, 2014, 47, 659-667.	4.8	81
56	Molecular Engineering of Azobenzene-Functionalized Polyimides To Enhance Both Photomechanical Work and Motion. Chemistry of Materials, 2014, 26, 5223-5230.	6.7	45
57	Torsional mechanical responses in azobenzene functionalized liquid crystalline polymer networks. Soft Matter, 2013, 9, 9303.	2.7	91
58	Synthesis, selfâ€assembly and reversible healing of supramolecular perfluoropolyethers. Journal of Polymer Science Part A, 2013, 51, 3598-3606.	2.3	34
59	The use of elemental sulfur as an alternative feedstock for polymeric materials. Nature Chemistry, 2013, 5, 518-524.	13.6	1,046
60	Organic/Inorganic Hybrid Block Copolymer Electrolytes with Nanoscale Ion-Conducting Channels for Lithium Ion Batteries. Macromolecules, 2012, 45, 9347-9356.	4.8	108
61	High-Strength, Healable, Supramolecular Polymer Nanocomposites. Journal of the American Chemical Society, 2012, 134, 5362-5368.	13.7	303
62	Effect of inner and outer chain length in multi-cationic site organoclays on the properties of PU/organoclay nanocomposites. Macromolecular Research, 2010, 18, 380-386.	2.4	0
63	Effect of organoclays on the properties of polyurethane/clay nanocomposite coatings. Journal of Applied Polymer Science, 2010, 117, 2090-2100.	2.6	15
64	Synthesis of Reactive Organifier for the Epoxy/layered Silicate Nanocomposite and the Properties of the Epoxy Nanocomposites. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 46, 205-214.	2.2	5