
Paul So

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11402443/publications.pdf Version: 2024-02-01

DALL SO

#	Article	IF	CITATIONS
1	Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Physical Review E, 1996, 54, 6708-6724.	2.1	344
2	Detecting Unstable Periodic Orbits in Chaotic Experimental Data. Physical Review Letters, 1996, 76, 4705-4708.	7.8	140
3	Complete Classification of the Macroscopic Behavior of a Heterogeneous Network of Theta Neurons. Neural Computation, 2013, 25, 3207-3234.	2.2	127
4	Synchronization in networks of networks: The onset of coherent collective behavior in systems of interacting populations of heterogeneous oscillators. Physical Review E, 2008, 77, 036107.	2.1	118
5	Extracting unstable periodic orbits from chaotic time series data. Physical Review E, 1997, 55, 5398-5417.	2.1	102
6	Periodic Orbits: A New Language for Neuronal Dynamics. Biophysical Journal, 1998, 74, 2776-2785.	0.5	94
7	A Model of the Effects of Applied Electric Fields on Neuronal Synchronization. Journal of Computational Neuroscience, 2005, 19, 53-70.	1.0	88
8	Synchronization in interacting populations of heterogeneous oscillators with time-varying coupling. Chaos, 2008, 18, 037114.	2.5	61
9	Networks of theta neurons with time-varying excitability: Macroscopic chaos, multistability, and final-state uncertainty. Physica D: Nonlinear Phenomena, 2014, 267, 16-26.	2.8	56
10	Double inverse stochastic resonance with dynamic synapses. Physical Review E, 2017, 95, 012404.	2.1	48
11	Mechanisms for the Development of Unstable Dimension Variability and the Breakdown of Shadowing in Coupled Chaotic Systems. Physical Review Letters, 2000, 85, 2490-2493.	7.8	41
12	Generating macroscopic chaos in a network of globally coupled phase oscillators. Chaos, 2011, 21, 033127.	2.5	34
13	The geometry of chaos synchronization. Chaos, 2003, 13, 151-164.	2.5	32
14	From Generalized Synchrony to Topological Decoherence: Emergent Sets in Coupled Chaotic Systems. Physical Review Letters, 2000, 84, 1689-1692.	7.8	28
15	The onset of synchronization in systems of globally coupled chaotic and periodic oscillators. Physica D: Nonlinear Phenomena, 2002, 173, 29-51.	2.8	27
16	Limits to the experimental detection of nonlinear synchrony. Physical Review E, 2002, 65, 046225.	2.1	26
17	Stochastic resonance in mammalian neuronal networks. Chaos, 1998, 8, 588-598.	2.5	22
18	Macroscopic complexity from an autonomous network of networks of theta neurons. Frontiers in Computational Neuroscience, 2014, 8, 145.	2.1	22

Paul So

#	Article	IF	CITATIONS
19	Box-counting dimension without boxes: ComputingD0from average expansion rates. Physical Review E, 1999, 60, 378-385.	2.1	11
20	THE BREAKDOWN OF SYNCHRONIZATION IN SYSTEMS OF NONIDENTICAL CHAOTIC OSCILLATORS: THEORY AND EXPERIMENT. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11, 2705-2713.	1.7	10
21	Control of collective network chaos. Chaos, 2014, 24, 023127.	2.5	6
22	Effects of polarization induced by non-weak electric fields on the excitability of elongated neurons with active dendrites. Journal of Computational Neuroscience, 2016, 40, 27-50.	1.0	6
23	Synaptic Diversity Suppresses Complex Collective Behavior in Networks of Theta Neurons. Frontiers in Computational Neuroscience, 2020, 14, 44.	2.1	4
24	Differentiability implies continuity in neuronal dynamics. Physica D: Nonlinear Phenomena, 2001, 148, 175-181.	2.8	1
25	THE BREAKDOWN OF SYNCHRONIZATION AND SHADOWING IN COUPLED CHAOTIC SYSTEMS: ANALYSIS VIA THE SUBSYSTEM DECOMPOSITION. , 2001, , .		0