Jang-Soo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11402008/publications.pdf

Version: 2024-02-01

516215 794141 5,175 17 16 19 h-index citations g-index papers 21 21 21 7477 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air. Advanced Energy Materials, 2011, 1, 34-50.	10.2	1,906
2	Recent Progress in Nonâ€Precious Catalysts for Metalâ€Air Batteries. Advanced Energy Materials, 2012, 2, 816-829.	10.2	652
3	In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation. ACS Central Science, 2015, 1, 244-251.	5.3	373
4	Allâ€Solidâ€State Cableâ€Type Flexible Zinc–Air Battery. Advanced Materials, 2015, 27, 1396-1401.	11.1	363
5	A Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction: Nâ€Doped Ketjenblack Incorporated into Fe/Fe ₃ Câ€Functionalized Melamine Foam. Angewandte Chemie - International Edition, 2013, 52, 1026-1030.	7.2	324
6	Ketjenblack Carbon Supported Amorphous Manganese Oxides Nanowires as Highly Efficient Electrocatalyst for Oxygen Reduction Reaction in Alkaline Solutions. Nano Letters, 2011, 11, 5362-5366.	4.5	261
7	lonic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn–air batteries. Energy and Environmental Science, 2011, 4, 4148.	15.6	191
8	Carbon-Coated Core–Shell Fe–Cu Nanoparticles as Highly Active and Durable Electrocatalysts for a Zn–Air Battery. ACS Nano, 2015, 9, 6493-6501.	7.3	167
9	Metal-Free Ketjenblack Incorporated Nitrogen-Doped Carbon Sheets Derived from Gelatin as Oxygen Reduction Catalysts. Nano Letters, 2014, 14, 1870-1876.	4.5	155
10	Enhanced Intrinsic Catalytic Activity of λâ€MnO ₂ by Electrochemical Tuning and Oxygen Vacancy Generation. Angewandte Chemie - International Edition, 2016, 55, 8599-8604.	7.2	107
11	Composites of a Prussian Blue Analogue and Gelatinâ€Derived Nitrogenâ€Doped Carbonâ€Supported Porous Spinel Oxides as Electrocatalysts for a Zn–Air Battery. Advanced Energy Materials, 2016, 6, 1601052.	10.2	98
12	Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for Zn–air batteries. Journal of Power Sources, 2013, 243, 267-273.	4.0	91
13	Facile synthesis of hybrid graphene and carbon nanotubes as a metal-free electrocatalyst with active dual interfaces for efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 9603.	5. 2	40
14	Enhanced Intrinsic Catalytic Activity of î̂»â€MnO ₂ by Electrochemical Tuning and Oxygen Vacancy Generation. Angewandte Chemie, 2016, 128, 8741-8746.	1.6	18
15	Metalâ€Air Batteries: Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air (Adv. Energy) Tj E	TQ _{q1} 1 0.	784314 rg8⊤ 15
16	Zinc-Air Batteries: All-Solid-State Cable-Type Flexible Zinc-Air Battery (Adv. Mater. 8/2015). Advanced Materials, 2015, 27, 1395-1395.	11.1	6
17	Zn-Air Batteries: Composites of a Prussian Blue Analogue and Gelatin-Derived Nitrogen-Doped Carbon-Supported Porous Spinel Oxides as Electrocatalysts for a Zn-Air Battery (Adv. Energy Mater.) Tj ETQq1 1	0.71842314	rg B T /Over