Xudong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11400784/publications.pdf

Version: 2024-02-01

257450 434195 4,433 31 24 31 h-index citations g-index papers 32 32 32 6890 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Shape-controlled synthesis of liquid metal nanodroplets for photothermal therapy. Nano Research, 2019, 12, 1313-1320.	10.4	83
2	In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Science Translational Medicine, 2018, 10, .	12.4	439
3	Bioresponsive Microneedles with a Sheath Structure for H ₂ O ₂ and pH Cascadeâ€√riggered Insulin Delivery. Small, 2018, 14, e1704181.	10.0	113
4	The mechanism of lauric acid-modified protein nanocapsules escape from intercellular trafficking vesicles and its implication for drug delivery. Drug Delivery, 2018, 25, 985-994.	5.7	13
5	PDâ€1 Blockade Cellular Vesicles for Cancer Immunotherapy. Advanced Materials, 2018, 30, e1707112.	21.0	196
6	Core–Shell Microneedle Gel for Self-Regulated Insulin Delivery. ACS Nano, 2018, 12, 2466-2473.	14.6	207
7	Phosphorylcholine-Based Stealthy Nanocapsules Decorating TPGS for Combatting Multi-Drug-Resistant Cancer. ACS Biomaterials Science and Engineering, 2018, 4, 1679-1686.	5.2	7
8	Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nature Chemical Biology, 2018, 14, 86-93.	8.0	184
9	Injectable Bioresponsive Gel Depot for Enhanced Immune Checkpoint Blockade. Advanced Materials, 2018, 30, e1801527.	21.0	233
10	Bacteria-Driven Hypoxia Targeting for Combined Biotherapy and Photothermal Therapy. ACS Nano, 2018, 12, 5995-6005.	14.6	253
11	Engineering PD-1-Presenting Platelets for Cancer Immunotherapy. Nano Letters, 2018, 18, 5716-5725.	9.1	172
12	Black Phosphorus: Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics (Adv. Mater. 1/2017). Advanced Materials, 2017, 29, .	21.0	10
13	A Drugâ€5elfâ€Gated Mesoporous Antitumor Nanoplatform Based on pHâ€5ensitive Dynamic Covalent Bond. Advanced Functional Materials, 2017, 27, 1605985.	14.9	255
14	Systematic investigation on the intracellular trafficking network of polymeric nanoparticles. Nanoscale, 2017, 9, 3269-3282.	5.6	62
15	TPGSâ€Functionalized Polydopamineâ€Modified Mesoporous Silica as Drug Nanocarriers for Enhanced Lung Cancer Chemotherapy against Multidrug Resistance. Small, 2017, 13, 1700623.	10.0	218
16	A pH-sensitive methenamine mandelate-loaded nanoparticle induces DNA damage and apoptosis of cancer cells. Acta Biomaterialia, 2017, 62, 246-256.	8.3	16
17	Cancer Therapy: TPGSâ€Functionalized Polydopamineâ€Modified Mesoporous Silica as Drug Nanocarriers for Enhanced Lung Cancer Chemotherapy against Multidrug Resistance (Small 29/2017). Small, 2017, 13, .	10.0	0
18	A melanin-mediated cancer immunotherapy patch. Science Immunology, 2017, 2, .	11.9	300

#	Article	IF	CITATIONS
19	Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics. Advanced Materials, 2017, 29, 1603276.	21.0	721
20	Investigation and intervention of autophagy to guide cancer treatment with nanogels. Nanoscale, 2017, 9, 150-163.	5.6	35
21	Intracellular Trafficking Network of Protein Nanocapsules: Endocytosis, Exocytosis and Autophagy. Theranostics, 2016, 6, 2099-2113.	10.0	67
22	Iron Oxide Nanoparticles Induce Autophagosome Accumulation through Multiple Mechanisms: Lysosome Impairment, Mitochondrial Damage, and ER Stress. Molecular Pharmaceutics, 2016, 13, 2578-2587.	4.6	112
23	The effects of quercetin-loaded PLGA-TPGS nanoparticles on ultraviolet B-induced skin damages in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 623-632.	3.3	61
24	Docetaxelâ€Loaded Nanoparticles of Dendritic Amphiphilic Block Copolymer H40â€PLAâ€∢i>bh a€TPGS for Cancer Treatment. Particle and Particle Systems Characterization, 2015, 32, 112-122.	2.3	54
25	Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy. Journal of Materials Science: Materials in Medicine, 2015, 26, 165.	3.6	37
26	pH-Triggered burst intracellular release from hollow microspheres to induce autophagic cancer cell death. Journal of Materials Chemistry B, 2015, 3, 9383-9396.	5. 8	13
27	Enhancing Therapeutic Effects of Docetaxel-Loaded Dendritic Copolymer Nanoparticles by Co-Treatment with Autophagy Inhibitor on Breast Cancer. Theranostics, 2014, 4, 1085-1095.	10.0	64
28	Autophagy inhibition strategy for advanced nanomedicine. Nanomedicine, 2014, 9, 377-380.	3.3	19
29	The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials, 2014, 35, 1932-1943.	11.4	159
30	Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials, 2014, 35, 2391-2400.	11.4	211
31	The chemotherapeutic potential of PEG-b-PLGA copolymer micelles that combine chloroquine as autophagy inhibitor and docetaxel as an anti-cancer drug. Biomaterials, 2014, 35, 9144-9154.	11.4	118