## R. Vijay

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/114007/publications.pdf Version: 2024-02-01



Ρ. Λιιλγ

| #  | Article                                                                                                                                                                                                                                      | IF                | CITATIONS          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 1  | Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens.<br>International Journal of Biological Macromolecules, 2019, 125, 99-108.                                                                   | 7.5               | 299                |
| 2  | Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites. Journal of Polymer Research, 2020, 27, 1.                                                     | 2.4               | 141                |
| 3  | Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced<br>hybrid composite for light weight applications. Journal of Industrial Textiles, 2020, 49, 1036-1060.                                 | 2.4               | 136                |
| 4  | Investigation on thermo-mechanical characteristics of treated/untreated <i>Portunus<br/>sanguinolentus</i> shell powder-based jute fabrics reinforced epoxy composites. Journal of<br>Industrial Textiles, 2020, 50, 427-459.                | 2.4               | 132                |
| 5  | Influence of various cashew friction dusts on the fade and recovery characteristics of non-asbestos copper free brake friction composites. Wear, 2019, 426-427, 1129-1141.                                                                   | 3.1               | 89                 |
| 6  | Characterization of Alkali-Treated and Untreated Natural Fibers from the Stem of Parthenium<br>Hysterophorus. Journal of Natural Fibers, 2021, 18, 80-90.                                                                                    | 3.1               | 84                 |
| 7  | ThermoMechanical Characterization of <i>Calotropis gigantea</i> Stem Powder-Filled Jute<br>Fiber-Reinforced Epoxy Composites. Journal of Natural Fibers, 2018, 15, 648-657.                                                                  | 3.1               | 83                 |
| 8  | Characterization of Silane-Treated and Untreated Natural Fibers from Stem of <i>Leucas Aspera</i> .<br>Journal of Natural Fibers, 2021, 18, 1957-1973.                                                                                       | 3.1               | 77                 |
| 9  | Characterization of untreated and alkali treated natural fibers extracted from the stem of <i>Catharanthus roseus</i> . Materials Research Express, 2019, 6, 085406.                                                                         | 1.6               | 73                 |
| 10 | Characterization of Natural Cellulose Fiber from the Barks of <i>Vachellia farnesiana</i> . Journal of Natural Fibers, 2022, 19, 1343-1352.                                                                                                  | 3.1               | 73                 |
| 11 | Extraction and characterization of natural fiber from Eleusine indica grass as reinforcement of sustainable fiber reinforced polymer composites. Journal of Natural Fibers, 2021, 18, 1742-1750.                                             | 3.1               | 67                 |
| 12 | Extraction and Characterization of Natural Fiber from Stem of Cardiospermum Halicababum. Journal of Natural Fibers, 2021, 18, 898-908.                                                                                                       | 3.1               | 67                 |
| 13 | Experimental Investigation on the Tribo-Thermal Properties of Brake Friction Materials Containing<br>Various Forms of Graphite: A Comparative Study. Arabian Journal for Science and Engineering, 2019, 44,<br>1459-1473.                    | 3.0               | 63                 |
| 14 | Characterization of Natural Fibers from <i>Cortaderia Selloana</i> Grass (Pampas) as Reinforcement<br>Material for the Production of the Composites. Journal of Natural Fibers, 2021, 18, 1893-1901.                                         | 3.1               | 58                 |
| 15 | Extraction and characterization of vetiver grass (Chrysopogon zizanioides) and kenaf fiber (Hibiscus) Tj ETQq1<br>Research and Technology, 2020, 9, 773-778.                                                                                 | 1 0.784314<br>5.8 | f rgBT /Over<br>56 |
| 16 | Extraction and Characterization of Natural Fibers from <i>Citrullus lanatus</i> Climber. Journal of Natural Fibers, 2022, 19, 621-629.                                                                                                       | 3.1               | 49                 |
| 17 | Experimental investigation on the mechanical properties of <i>Cyperus pangorei</i> fibers and jute<br>fiber-based natural fiber composites. International Journal of Polymer Analysis and Characterization,<br>2016, 21, 617-627.            | 1.9               | 48                 |
| 18 | Influence of thermal conductivity and thermal stability on the fade and recovery characteristics of non-asbestos semi-metallic disc brake pad. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38, 1207-1219. | 1.6               | 47                 |

R. VIJAY

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Evaluation of <i>Azadirachta indica</i> seed/spent <i>Camellia sinensis</i> bio-filler based jute<br>fabrics–epoxy composites: Experimental and numerical studies. Journal of Industrial Textiles, 2020, 49,<br>1252-1277. | 2.4 | 47        |
| 20 | Development and characterization of stainless steel fiber-based copper-free brake liner formulation: A positive solution for steel fiber replacement. Friction, 2020, 8, 396-420.                                          | 6.4 | 44        |
| 21 | Jute/Hemp bio-epoxy hybrid bio-composites: Influence of stacking sequence on adhesion of fiber-matrix.<br>International Journal of Adhesion and Adhesives, 2022, 113, 103050.                                              | 2.9 | 43        |
| 22 | Characterization of Novel Natural Fiber from Saccharum Bengalense Grass (Sarkanda). Journal of<br>Natural Fibers, 2020, 17, 1739-1747.                                                                                     | 3.1 | 40        |
| 23 | Influence of WS <sub>2</sub> /SnS <sub>2</sub> on the tribological performance of copper-free brake pads. Industrial Lubrication and Tribology, 2019, 71, 398-405.                                                         | 1.3 | 38        |
| 24 | Extraction and Characterization of Cellulose Fibers from the Stem of <i>Momordica Charantia</i> .<br>Journal of Natural Fibers, 2022, 19, 2232-2242.                                                                       | 3.1 | 38        |
| 25 | Influence of Stacking Sequence on the Mechanical and Water Absorption Characteristics of Areca<br>Sheath-palm Leaf Sheath Fibers Reinforced Epoxy Composites. Journal of Natural Fibers, 2022, 19,<br>1670-1680.           | 3.1 | 37        |
| 26 | INFLUENCE OF MOLYBDENUM DISULFIDE PARTICLE SIZE ON FRICTION AND WEAR CHARACTERISTICS OF NON-ASBESTOS-BASED COPPER-FREE BRAKE FRICTION COMPOSITES. Surface Review and Letters, 2020, 27, 1950085.                           | 1.1 | 36        |
| 27 | Development and Performance Evaluation of Eco-Friendly Crab Shell Powder Based Brake Pads for<br>Automotive Applications. International Journal of Automotive and Mechanical Engineering, 2019, 16,<br>6502-6523.          | 0.9 | 36        |
| 28 | Characterization of raw and benzoyl chloride treated Impomea pes-caprae fibers and its epoxy composites. Materials Research Express, 2019, 6, 095307.                                                                      | 1.6 | 33        |
| 29 | Effect of alkali treatment on performance characterization of <i>Ziziphus mauritiana fiber</i> and its epoxy composites. Journal of Industrial Textiles, 2022, 51, 2444S-2466S.                                            | 2.4 | 33        |
| 30 | Tribological characterization of recycled basalt-aramid fiber reinforced hybrid friction composites using grey-based Taguchi approach. Materials Research Express, 2019, 6, 065301.                                        | 1.6 | 30        |
| 31 | Influence of Chemical Treatment on the Physico-mechanical Characteristics of Natural Fibers<br>Extracted from the Barks of <i>Vachellia Farnesiana</i> . Journal of Natural Fibers, 2022, 19, 5065-5075.                   | 3.1 | 26        |
| 32 | Investigation on tribological and corrosion characteristics of oxide-coated steel and mild steel fiber-based brake friction composites. Industrial Lubrication and Tribology, 2019, 71, 341-347.                           | 1.3 | 25        |
| 33 | Influence of recycled basalt-aramid fibres integration on the mechanical and thermal properties of brake friction composites. Materials Research Express, 2019, 6, 115310.                                                 | 1.6 | 24        |
| 34 | Synergistic effect of red mud-iron sulfide particles on fade-recovery characteristics of non-asbestos<br>organic brake friction composites. Materials Research Express, 0, , .                                             | 1.6 | 23        |
| 35 | Optimization of Tribological Properties of Nonasbestos Brake Pad Material by Using Steel Wool.<br>Advances in Tribology, 2013, 2013, 1-9.                                                                                  | 2.1 | 22        |
| 36 | Influence of iron–aluminum alloy on the tribological performance of non-asbestos brake friction<br>materials – a solution for copper replacement. Industrial Lubrication and Tribology, 2019, 72, 66-78.                   | 1.3 | 22        |

R. VIJAY

| #  | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Influence of Crab Shell on Tribological Characterization of Eco-Friendly Products Based Non<br>Asbestos Brake Friction Materials. , 0, , .                                                                                                                                        |     | 21        |
| 38 | Brake friction composite materials: A review on classifications and influences of friction materials in<br>braking performance with characterizations. Proceedings of the Institution of Mechanical Engineers,<br>Part J: Journal of Engineering Tribology, 2022, 236, 1674-1706. | 1.8 | 21        |
| 39 | The Effects of Stacking Sequence on the Mechanical and Water Absorption Properties of<br>Areca-Pineapple Fiber-based Epoxy Composites. Journal of Natural Fibers, 2022, 19, 9681-9692.                                                                                            | 3.1 | 14        |
| 40 | Influence of natural barytes purity levels on the tribological characteristics of non-asbestos brake pads. Industrial Lubrication and Tribology, 2019, 72, 349-358.                                                                                                               | 1.3 | 9         |
| 41 | Influence of <i>Parthenium Hysterophorus</i> and <i>Impomea Pes-caprae Fibers</i> Stacking<br>Sequence on the Performance Characteristics of Epoxy Composites. Journal of Natural Fibers, 2022, 19,<br>4456-4466.                                                                 | 3.1 | 9         |
| 42 | Synergistic performance of expanded graphite—mica amalgamation based non-asbestos copper-free brake friction composites. Surface Topography: Metrology and Properties, 2022, 10, 015019.                                                                                          | 1.6 | 9         |
| 43 | Utilization of waste black limestone filler in short jute fiber reinforced epoxy composites: Influence<br>on the mechanical behaviour. Proceedings of the Institution of Mechanical Engineers, Part E: Journal<br>of Process Mechanical Engineering, 0, , 095440892210781.        | 2.5 | 8         |
| 44 | Influence of stacking sequence on mechanical characteristics of Cyperus pangorei fibres based natural fibre composites. Materials Today: Proceedings, 2018, 5, 8504-8513.                                                                                                         | 1.8 | 7         |
| 45 | Extraction and Characterization Chemical Treated and Untreated <i>Lycium ferocissimum</i> Fiber for Epoxy Composites. Journal of Natural Fibers, 2022, 19, 6509-6520.                                                                                                             | 3.1 | 6         |
| 46 | Tribological characterization of different mesh-sized natural barite-based copper-free brake friction composites. , 2021, , 279-300.                                                                                                                                              |     | 5         |
| 47 | Development and characterization of stainless steel fiber-based copper-free brake liner formulation—A positive solution for steel fiber replacement. Friction, 2020, 8, 396.                                                                                                      | 6.4 | 5         |
| 48 | Characterization of Silane Treated and Untreated <i>Citrullus lanatus</i> Fibers Based eco-friendly<br>Automotive Brake Friction Composites. Journal of Natural Fibers, 2022, 19, 13273-13287.                                                                                    | 3.1 | 5         |
| 49 | Effect of stacking sequence on tribological properties of bamboo/jute reinforced hybrid epoxy polymer composites. Materials Today: Proceedings, 2021, 39, 1-5.                                                                                                                    | 1.8 | 4         |
| 50 | Tribological characterization of biofiber-reinforced brake friction composites. , 2022, , 475-486.                                                                                                                                                                                |     | 1         |
| 51 | Investigation of the mechanical properties of treated and untreated Vachellia farnesiana fiber based epoxy composites. , 2022, , 487-497.                                                                                                                                         |     | 0         |