
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11400455/publications.pdf Version: 2024-02-01

ISAAC CINIS

#	Article	IF	CITATIONS
1	Assessment of hurricane generated loads on offshore wind farms; a closer look at most extreme historical hurricanes in New England. Renewable Energy, 2021, 175, 593-609.	8.9	6
2	Flood risk in past and future: A case study for the Pawtuxet River's recordâ€breaking March 2010 flood event. Journal of Flood Risk Management, 2020, 13, e12655.	3.3	4
3	Potential effect of bio-surfactants on sea spray generation in tropical cyclone conditions. Scientific Reports, 2020, 10, 19057.	3.3	4
4	Impact of Shoaling Ocean Surface Waves on Wind Stress and Drag Coefficient in Coastal Waters: 2. Tropical Cyclones. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016223.	2.6	5
5	Impact of Shoaling Ocean Surface Waves on Wind Stress and Drag Coefficient in Coastal Waters: 1. Uniform Wind. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016222.	2.6	6
6	Assessing the Multiple Impacts of Extreme Hurricanes in Southern New England, USA. Geosciences (Switzerland), 2019, 9, 265.	2.2	13
7	Hurricane Model Development at GFDL: A Collaborative Success Story from a Historical Perspective. Bulletin of the American Meteorological Society, 2019, 100, 1725-1736.	3.3	9
8	Wind–Wave Misalignment Effects on Langmuir Turbulence in Tropical Cyclone Conditions. Journal of Physical Oceanography, 2019, 49, 3109-3126.	1.7	14
9	Developing Consequence Thresholds for Storm Models Through Participatory Processes: Case Study of Westerly Rhode Island. Frontiers in Earth Science, 2019, 7, .	1.8	3
10	Role of Hurricane Wind Models in Accurate Simulation of Storm Surge and Waves. Journal of Waterway, Port, Coastal and Ocean Engineering, 2019, 145, .	1.2	32
11	Hydrological modeling of storm runoff and snowmelt in Taunton River Basin by applications of HEC-HMS and PRMS models. Natural Hazards, 2018, 91, 179-199.	3.4	22
12	Real-Time Chronological Hazard Impact Modeling. Journal of Marine Science and Engineering, 2018, 6, 134.	2.6	9
13	Interaction of Langmuir Turbulence and Inertial Currents in the Ocean Surface Boundary Layer under Tropical Cyclones. Journal of Physical Oceanography, 2018, 48, 1921-1940.	1.7	12
14	Sensitivity of Offshore Tropical Cyclone Wave Simulations to Spatial Resolution in Wave Models. Journal of Marine Science and Engineering, 2018, 6, 116.	2.6	9
15	On the Characteristics of Linear-Phase Roll Vortices under a Moving Hurricane Boundary Layer. Journals of the Atmospheric Sciences, 2018, 75, 2589-2598.	1.7	9
16	Is the State of the Air‣ea Interface a Factor in Rapid Intensification and Rapid Decline of Tropical Cyclones?. Journal of Geophysical Research: Oceans, 2017, 122, 10174-10183.	2.6	15
17	Characteristics of river flood and storm surge interactions in a tidal river in Rhode Island, USA. Procedia IUTAM, 2017, 25, 60-64.	1.2	10
18	Effect of Boundary Layer Roll Vortices on the Development of an Axisymmetric Tropical Cyclone. Journals of the Atmospheric Sciences, 2017, 74, 2737-2759.	1.7	19

#	Article	IF	CITATIONS
19	Impact of Upper-Tropospheric Temperature Anomalies and Vertical Wind Shear on Tropical Cyclone Evolution Using an Idealized Version of the Operational GFDL Hurricane Model. Journals of the Atmospheric Sciences, 2016, 73, 3803-3820.	1.7	29
20	Impact of Sea-State-Dependent Langmuir Turbulence on the Ocean Response to a Tropical Cyclone. Monthly Weather Review, 2016, 144, 4569-4590.	1.4	28
21	Langmuir Turbulence Parameterization in Tropical Cyclone Conditions. Journal of Physical Oceanography, 2016, 46, 863-886.	1.7	57
22	On the Equilibrium-State Roll Vortices and Their Effects in the Hurricane Boundary Layer. Journals of the Atmospheric Sciences, 2016, 73, 1205-1222.	1.7	27
23	Langmuir Turbulence under Hurricane Gustav (2008). Journal of Physical Oceanography, 2015, 45, 657-677.	1.7	27
24	Ocean modeling with flexible initialization for improved coupled tropical cyclone-ocean model prediction. Environmental Modelling and Software, 2015, 67, 26-30.	4.5	18
25	Description and Analysis of the Ocean Component of NOAA's Operational Hurricane Weather Research and Forecasting Model (HWRF). Journal of Atmospheric and Oceanic Technology, 2015, 32, 144-163.	1.3	54
26	On the Generation of Roll Vortices due to the Inflection Point Instability of the Hurricane Boundary Layer Flow. Journals of the Atmospheric Sciences, 2014, 71, 4292-4307.	1.7	25
27	Tropical Cyclone–Induced Thermocline Warming and Its Regional and Global Impacts. Journal of Climate, 2014, 27, 6978-6999.	3.2	35
28	Sea state dependence of the wind stress over the ocean under hurricane winds. Journal of Geophysical Research: Oceans, 2014, 119, 30-51.	2.6	53
29	The air-sea interface and surface stress under tropical cyclones. Scientific Reports, 2014, 4, 5306.	3.3	98
30	Aerosol Effects on Microstructure and Intensity of Tropical Cyclones. Bulletin of the American Meteorological Society, 2012, 93, 987-1001.	3.3	127
31	Impact of a Warm Ocean Eddy's Circulation on Hurricane-Induced Sea Surface Cooling with Implications for Hurricane Intensity. Monthly Weather Review, 2012, 141, 997-1021.	1.4	57
32	Experimental Tropical Cyclone Prediction Using the GFDL 25-km-Resolution Global Atmospheric Model. Weather and Forecasting, 2011, 26, 1008-1019.	1.4	27
33	Momentum Flux Budget across the Air–Sea Interface under Uniform and Tropical Cyclone Winds. Journal of Physical Oceanography, 2010, 40, 2221-2242.	1.7	24
34	Short- and Medium-Range Prediction of Tropical and Transitioning Cyclone Tracks within the NCEP Global Ensemble Forecasting System. Weather and Forecasting, 2010, 25, 1736-1754.	1.4	30
35	The Effect of Wind–Wave–Current Interaction on Air–Sea Momentum Fluxes and Ocean Response in Tropical Cyclones. Journal of Physical Oceanography, 2009, 39, 1019-1034.	1.7	121
36	Limitation of One-Dimensional Ocean Models for Coupled Hurricane–Ocean Model Forecasts. Monthly Weather Review, 2009, 137, 4410-4419.	1.4	108

#	Article	IF	CITATIONS
37	Numerical Simulations and Observations of Surface Wave Fields under an Extreme Tropical Cyclone. Journal of Physical Oceanography, 2009, 39, 2097-2116.	1.7	114
38	Improving the Ocean Initialization of Coupled Hurricane–Ocean Models Using Feature-Based Data Assimilation. Monthly Weather Review, 2008, 136, 2592-2607.	1.4	38
39	Impact of the Reduced Drag Coefficient on Ocean Wave Modeling under Hurricane Conditions. Monthly Weather Review, 2008, 136, 1217-1223.	1.4	31
40	A Physics-Based Parameterization of Air–Sea Momentum Flux at High Wind Speeds and Its Impact on Hurricane Intensity Predictions. Monthly Weather Review, 2007, 135, 2869-2878.	1.4	147
41	The Operational GFDL Coupled Hurricane–Ocean Prediction System and a Summary of Its Performance. Monthly Weather Review, 2007, 135, 3965-3989.	1.4	218
42	Ocean Data Assimilation and Initialization Procedure for the Coupled GFDL/URI Hurricane Prediction System. Journal of Atmospheric and Oceanic Technology, 2005, 22, 1918-1932.	1.3	23
43	Effect of surface waves on Charnock coefficient under tropical cyclones. Geophysical Research Letters, 2004, 31, .	4.0	47
44	Asymmetry of an Equilibrated Gulf Stream–Type Jet over Topographic Slope. Journal of Physical Oceanography, 2004, 34, 1087-1102.	1.7	5
45	Effects of Large Eddies on the Structure of the Marine Boundary Layer under Strong Wind Conditions. Journals of the Atmospheric Sciences, 2004, 61, 3049-3064.	1.7	30
46	Effect of Surface Waves on Air–Sea Momentum Exchange. Part I: Effect of Mature and Growing Seas. Journals of the Atmospheric Sciences, 2004, 61, 2321-2333.	1.7	79
47	Effect of Surface Waves on Air–Sea Momentum Exchange. Part II: Behavior of Drag Coefficient under Tropical Cyclones. Journals of the Atmospheric Sciences, 2004, 61, 2334-2348.	1.7	138
48	Effects of surface heat flux-induced sea surface temperature changes on tropical cyclone intensity. Geophysical Research Letters, 2003, 30, .	4.0	28
49	Numerical Simulation of Sea Surface Directional Wave Spectra under Hurricane Wind Forcing. Journal of Physical Oceanography, 2003, 33, 1680-1706.	1.7	166
50	A Numerical Investigation of Land Surface Water on Landfalling Hurricanes. Journals of the Atmospheric Sciences, 2002, 59, 789-802.	1.7	47
51	The impact of ocean coupling on hurricanes during landfall. Geophysical Research Letters, 2001, 28, 2839-2842.	4.0	7
52	Impact of CO2-Induced Warming on Hurricane Intensities as Simulated in a Hurricane Model with Ocean Coupling. Journal of Climate, 2001, 14, 2458-2468.	3.2	97
53	Equilibration of Baroclinic Meanders and Deep Eddies in a Gulf Stream–type Jet over a Sloping Bottom. Journal of Physical Oceanography, 2001, 31, 2049-2065.	1.7	16
54	A Sensitivity Study of the Thermodynamic Environment on GFDL Model Hurricane Intensity: Implications for Global Warming. Journal of Climate, 2000, 13, 109-121.	3.2	99

#	Article	IF	CITATIONS
55	Real-Case Simulations of Hurricane–Ocean Interaction Using A High-Resolution Coupled Model: Effects on Hurricane Intensity. Monthly Weather Review, 2000, 128, 917-946.	1.4	370
56	Interaction of binary tropical cyclones in a coupled tropical cyclone-ocean model. Journal of Geophysical Research, 2000, 105, 22337-22354.	3.3	14
57	Hurricane-Generated Depth-Averaged Currents and Sea Surface Elevation. Journal of Physical Oceanography, 1995, 25, 1218-1242.	1.7	36
58	Motion and Evolution of Binary Tropical Cyclones in a Coupled Atmosphere–Ocean Numerical Model. Monthly Weather Review, 1995, 123, 1345-1363.	1.4	23
59	Numerical simulations of tropical cycloneâ€ocean interaction with a highâ€resolution coupled model. Journal of Geophysical Research, 1993, 98, 23245-23263.	3.3	264