Fangmao Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11397530/publications.pdf

Version: 2024-02-01

361413 454955 2,218 32 20 30 citations h-index g-index papers 32 32 32 2634 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Lanthanideâ€Coordinated Semiconducting Polymer Dots Used for Flow Cytometry and Mass Cytometry. Angewandte Chemie, 2017, 129, 15104-15108.	2.0	3
2	Lanthanideâ€Coordinated Semiconducting Polymer Dots Used for Flow Cytometry and Mass Cytometry. Angewandte Chemie - International Edition, 2017, 56, 14908-14912.	13.8	32
3	Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots. Nature Communications, 2016, 7, 11468.	12.8	85
4	Squaraine-Based Polymer Dots with Narrow, Bright Near-Infrared Fluorescence for Biological Applications. Journal of the American Chemical Society, 2015, 137, 173-178.	13.7	145
5	Single-Chain Semiconducting Polymer Dots. Langmuir, 2015, 31, 499-505.	3 . 5	8
6	Light-induced crosslinkable semiconducting polymer dots. Chemical Science, 2015, 6, 2102-2109.	7.4	22
7	Ultrasensitive Protein Detection on Dot Blots and Western Blots with Semiconducting Polymer Dots. Methods in Molecular Biology, 2015, 1314, 131-137.	0.9	2
8	Toxicity and oxidative stress induced by semiconducting polymer dots in RAW264.7 mouse macrophages. Nanoscale, 2015, 7, 10085-10093.	5.6	37
9	Semiconducting polymer dots with monofunctional groups. Chemical Communications, 2014, 50, 5604-5607.	4.1	15
10	Yellow Fluorescent Semiconducting Polymer Dots with High Brightness, Small Size, and Narrow Emission for Biological Applications. ACS Macro Letters, 2014, 3, 1051-1054.	4.8	20
11	Multicolor Fluorescent Semiconducting Polymer Dots with Narrow Emissions and High Brightness. ACS Nano, 2013, 7, 376-384.	14.6	197
12	High-intensity near-IR fluorescence in semiconducting polymer dots achieved by cascade FRET strategy. Chemical Science, 2013, 4, 2143.	7.4	89
13	Ultrasensitive Detection of Proteins on Western Blots with Semiconducting Polymer Dots. Macromolecular Rapid Communications, 2013, 34, 785-790.	3.9	18
14	Lyophilization of Semiconducting Polymer Dot Bioconjugates. Analytical Chemistry, 2013, 85, 4316-4320.	6.5	20
15	Highly fluorescent semiconducting polymer dots for single-molecule imaging and biosensing. Proceedings of SPIE, 2013, , .	0.8	1
16	Probing the interior of synaptic vesicles with internalized nanoparticles. , 2012, 8232, .		0
17	Generation of functionalized and robust semiconducting polymer dots with polyelectrolytes. Chemical Communications, 2012, 48, 3161.	4.1	46
18	A compact and highly fluorescent orange-emitting polymer dot for specific subcellular imaging. Chemical Communications, 2012, 48, 1778.	4.1	109

#	Article	IF	CITATIONS
19	Importance of Having Low-Density Functional Groups for Generating High-Performance Semiconducting Polymer Dots. ACS Nano, 2012, 6, 5429-5439.	14.6	108
20	A versatile method for generating semiconducting polymer dot nanocomposites. Nanoscale, 2012, 4, 7246.	5.6	31
21	Hybrid Semiconducting Polymer Dot–Quantum Dot with Narrow-Band Emission, Near-Infrared Fluorescence, and High Brightness. Journal of the American Chemical Society, 2012, 134, 7309-7312.	13.7	113
22	Stable Functionalization of Small Semiconducting Polymer Dots via Covalent Crossâ€Linking and Their Application for Specific Cellular Imaging. Advanced Materials, 2012, 24, 3498-3504.	21.0	120
23	Covalent Crossâ€Linking: Stable Functionalization of Small Semiconducting Polymer Dots via Covalent Crossâ€Linking and Their Application for Specific Cellular Imaging (Adv. Mater. 26/2012). Advanced Materials, 2012, 24, 3577-3577.	21.0	0
24	Near-Infrared Fluorescent Dye-Doped Semiconducting Polymer Dots. ACS Nano, 2011, 5, 1468-1475.	14.6	202
25	Ratiometric Temperature Sensing with Semiconducting Polymer Dots. Journal of the American Chemical Society, 2011, 133, 8146-8149.	13.7	361
26	Development of Ultrabright Semiconducting Polymer Dots for Ratiometric pH Sensing. Analytical Chemistry, 2011, 83, 1448-1455.	6.5	245
27	Fluorescence Spectroscopy Studies of Silica Film Polarity Gradients Prepared by Infusion-Withdrawal Dip-Coating. Chemistry of Materials, 2010, 22, 2970-2977.	6.7	20
28	What can be learned from single molecule spectroscopy? Applications to sol–gel-derived silica materials. Physical Chemistry Chemical Physics, 2009, 11, 66-82.	2.8	52
29	Following the Growth Process in Macroporous Methylsilsesquioxane Films at the Single Macropore Level by Confocal Correlation Spectroscopy. Chemistry of Materials, 2007, 19, 6528-6535.	6.7	6
30	Molecular Orientation and Its Influence on Autocorrelation Amplitudes in Single-Molecule Imaging Experiments. Analytical Chemistry, 2007, 79, 6465-6472.	6.5	15
31	Probing Chemical Interactions at the Single-Molecule Level in Mesoporous Silica Thin Films. Journal of Physical Chemistry C, 2007, 111, 6772-6780.	3.1	24
32	Single Molecule Spectroscopy Studies of Diffusion in Mesoporous Silica Thin Films. Journal of Physical Chemistry B, 2006, 110, 9164-9170.	2.6	72