Francisco Blanco-Vaca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1139612/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of vitamin D in the pathogenesis of type 2 diabetes mellitus. Diabetes, Obesity and Metabolism, 2008, 10, 185-197.	2.2	410
2	Genetic Susceptibility to Thrombosis and Its Relationship to Physiological Risk Factors: The GAIT Study. American Journal of Human Genetics, 2000, 67, 1452-1459.	2.6	306
3	New insights into the molecular actions of plant sterols and stanols in cholesterol metabolism. Atherosclerosis, 2009, 203, 18-31.	0.4	241
4	Plasma homocysteine is related to albumin excretion rate in patients with diabetes mellitus: a new link between diabetic nephropathy and cardiovascular disease?. Diabetologia, 1998, 41, 684-693.	2.9	186
5	Trimethylamine N-Oxide: A Link among Diet, Gut Microbiota, Gene Regulation of Liver and Intestine Cholesterol Homeostasis and HDL Function. International Journal of Molecular Sciences, 2018, 19, 3228.	1.8	138
6	Moderate beer consumption does not change early or mature atherosclerosis in mice. Nutrition Journal, 2004, 3, 1.	1.5	123
7	Human Apolipoprotein A-II Enrichment Displaces Paraoxonase From HDL and Impairs Its Antioxidant Properties. Circulation Research, 2004, 95, 789-797.	2.0	118
8	Role of apoA-II in lipid metabolism and atherosclerosis: advances in the study of an enigmatic protein. Journal of Lipid Research, 2001, 42, 1727-1739.	2.0	118
9	Platelet-Activating Factor Acetylhydrolase Is Mainly Associated With Electronegative Low-Density Lipoprotein Subfraction. Circulation, 2003, 108, 92-96.	1.6	101
10	HDL and LDL: Potential New Players in Breast Cancer Development. Journal of Clinical Medicine, 2019, 8, 853.	1.0	93
11	Sitosterolemia: Diagnosis, Investigation, and Management. Current Atherosclerosis Reports, 2014, 16, 424.	2.0	92
12	A Genomewide Exploration Suggests a New Candidate Gene at Chromosome 11q23 as the Major Determinant of Plasma Homocysteine Levels: Results from the GAIT Project. American Journal of Human Genetics, 2005, 76, 925-933.	2.6	90
13	Changes in intestinal and liver global gene expression in response to a phytosterol-enriched diet. Atherosclerosis, 2005, 181, 75-85.	0.4	84
14	Density distribution of electronegative LDL in normolipemic and hyperlipemic subjects. Journal of Lipid Research, 2002, 43, 699-705.	2.0	81
15	Changes in low-density lipoprotein electronegativity and oxidizability after aerobic exercise are related to the increase in associated non-esterified fatty acids. Atherosclerosis, 2002, 160, 223-232.	0.4	77
16	Effect of simvastatin treatment on the electronegative low-density lipoprotein present in patients with heterozygous familial hypercholesterolemia. American Journal of Cardiology, 1999, 84, 655-659.	0.7	76
17	Liver X receptor-mediated activation of reverse cholesterol transport from macrophages to feces in vivo requires ABCG5/G8. Journal of Lipid Research, 2008, 49, 1904-1911.	2.0	74
18	Human Apolipoprotein A-II Determines Plasma Triglycerides by Regulating Lipoprotein Lipase Activity and High-Density Lipoprotein Proteome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 232-238.	1.1	69

#	Article	IF	CITATIONS
19	Functional Lecithin:Cholesterol Acyltransferase Deficiency and High Density Lipoprotein Deficiency in Transgenic Mice Overexpressing Human Apolipoprotein A-II. Journal of Biological Chemistry, 1996, 271, 6720-6728.	1.6	68
20	Density distribution of electronegative LDL in normolipemic and hyperlipemic subjects. Journal of Lipid Research, 2002, 43, 699-705.	2.0	66
21	The Cholesterol Content of Western Diets Plays a Major Role in the Paradoxical Increase in High-Density Lipoprotein Cholesterol and Upregulates the Macrophage Reverse Cholesterol Transport Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2493-2499.	1.1	64
22	Identification of a novel mutation in the ANGPTL3 gene in two families diagnosed of familial hypobetalipoproteinemia without APOB mutation. Clinica Chimica Acta, 2012, 413, 552-555.	0.5	63
23	Overexpression of Human Apolipoprotein A-II in Transgenic Mice Does Not Impair Macrophage-Specific Reverse Cholesterol Transport In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, e128-32.	1.1	61
24	Homozygous Familial Hypercholesterolemia in Spain. Circulation: Cardiovascular Genetics, 2016, 9, 504-510.	5.1	61
25	Human apolipoprotein A-II is a pro-atherogenic molecule when it is expressed in transgenic mice at a level similar to that in humans: evidence of a potentially relevant species-specific interaction with diet. Journal of Lipid Research, 1998, 39, 457-462.	2.0	61
26	Chylomicrons: Advances in biology, pathology, laboratory testing, and therapeutics. Clinica Chimica Acta, 2016, 455, 134-148.	0.5	59
27	Expression of human apolipoprotein A-II in apolipoprotein E-deficient mice induces features of familial combined hyperlipidemia. Journal of Lipid Research, 2000, 41, 1328-1338.	2.0	59
28	The Effects of Liposuction Removal of Subcutaneous Abdominal Fat on Lipid Metabolism are Independent of Insulin Sensitivity in Normal-Overweight Individuals. Obesity Surgery, 2008, 18, 408-414.	1.1	56
29	In vivo macrophage-specific RCT and antioxidant and antiinflammatory HDL activity measurements: New tools for predicting HDL atheroprotection. Atherosclerosis, 2009, 206, 321-327.	0.4	56
30	Cyclooxygenase 2 Inhibition Exacerbates Palmitate-Induced Inflammation and Insulin Resistance in Skeletal Muscle Cells. Endocrinology, 2010, 151, 537-548.	1.4	52
31	Latent autoimmune diabetes in adults is perched between type 1 and type 2: evidence from adults in one region of Spain. Diabetes/Metabolism Research and Reviews, 2013, 29, 446-451.	1.7	49
32	Modulation of the Gut Microbiota by Olive Oil Phenolic Compounds: Implications for Lipid Metabolism, Immune System, and Obesity. Nutrients, 2020, 12, 2200.	1.7	48
33	Emerging cardiovascular risk factors in subclinical hypothyroidism: Lack of change after restoration of euthyroidism. Metabolism: Clinical and Experimental, 2004, 53, 1512-1515.	1.5	47
34	Are LXR-regulated genes a major molecular target of plant sterols/stanols?. Atherosclerosis, 2007, 195, 210-211.	0.4	47
35	Impact of the LDL subfraction phenotype on Lp-PLA2 distribution, LDL modification and HDL composition in type 2 diabetes. Cardiovascular Diabetology, 2013, 12, 112.	2.7	47
36	Apolipoprotein A-II, genetic variation on chromosome 1q21-q24, and disease susceptibility. Current Opinion in Lipidology, 2004, 15, 247-253.	1.2	45

#	Article	IF	CITATIONS
37	LDL Receptor Regulates the Reverse Transport of Macrophage-Derived Unesterified Cholesterol via Concerted Action of the HDL-LDL Axis. Circulation Research, 2020, 127, 778-792.	2.0	45
38	Structure of Human Apolipoprotein D: Locations of the Intermolecular and Intramolecular Disulfide Links. Biochemistry, 1994, 33, 12451-12455.	1.2	43
39	Dietary phytosterols modulate T-helper immune response but do not induce apparent anti-inflammatory effects in a mouse model of acute, aseptic inflammation. Life Sciences, 2007, 80, 1951-1956.	2.0	42
40	ApoA-II expression in CETP transgenic mice increases VLDL production and impairs VLDL clearance. Journal of Lipid Research, 2001, 42, 241-248.	2.0	42
41	Homocysteine and Cognitive Impairment. Dementia and Geriatric Cognitive Disorders, 2008, 26, 506-512.	0.7	41
42	Phytosterols inhibit the tumor growth and lipoprotein oxidizability induced by a high-fat diet in mice with inherited breast cancer. Journal of Nutritional Biochemistry, 2013, 24, 39-48.	1.9	41
43	APOA1 oxidation is associated to dysfunctional high-density lipoproteins in human abdominal aortic aneurysm. EBioMedicine, 2019, 43, 43-53.	2.7	40
44	Effect of Improving Glycemic Control in Patients With Type 2 Diabetes Mellitus on Low-Density Lipoprotein Size, Electronegative Low-Density Lipoprotein and Lipoprotein-Associated Phospholipase A2 Distribution. American Journal of Cardiology, 2012, 110, 67-71.	0.7	37
45	Phytosterols in Cancer: From Molecular Mechanisms to Preventive and Therapeutic Potentials. Current Medicinal Chemistry, 2019, 26, 6735-6749.	1.2	37
46	Human scavenger protein AIM increases foam cell formation and CD36-mediated oxLDL uptake. Journal of Leukocyte Biology, 2013, 95, 509-520.	1.5	36
47	Effects of site-directed mutagenesis on the N-glycosylation sites of human lecithin:cholesterol acyltransferase. Biochemistry, 1993, 32, 8732-8736.	1.2	35
48	Direct evidence in vivo of impaired macrophage-specific reverse cholesterol transport in ATP-binding cassette transporter A1-deficient mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1738, 6-9.	1.2	34
49	Structural and functional analysis of APOA5 mutations identified in patients with severe hypertriglyceridemia. Journal of Lipid Research, 2013, 54, 649-661.	2.0	34
50	Molecular analysis of chylomicronemia in a clinical laboratory setting: Diagnosis of 13 cases of lipoprotein lipase deficiency. Clinica Chimica Acta, 2014, 429, 61-68.	0.5	34
51	ApoA-I mimetic administration, but not increased apoA-I-containing HDL, inhibits tumour growth in a mouse model of inherited breast cancer. Scientific Reports, 2016, 6, 36387.	1.6	34
52	The role of the gut in reverse cholesterol transport – Focus on the enterocyte. Progress in Lipid Research, 2013, 52, 317-328.	5.3	33
53	Increased production of very-low-density lipoproteins in transgenic mice overexpressing human apolipoprotein A-II and fed with a high-fat diet. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1488, 233-244.	1.2	31
54	Serum soluble transferrin receptor concentrations are increased in central obesity. Results from a screening programme for hereditary hemochromatosis in men with hyperferritinemia. Clinica Chimica Acta, 2009, 400, 111-116.	0.5	30

FRANCISCO BLANCO-VACA

#	Article	IF	CITATIONS
55	Identification of ZNF366 and PTPRD as novel determinants of plasma homocysteine in a family-based genome-wide association study. Blood, 2009, 114, 1417-1422.	0.6	30
56	LDL, HDL and endocrine-related cancer: From pathogenic mechanisms to therapies. Seminars in Cancer Biology, 2021, 73, 134-157.	4.3	30
57	Bariatric surgery in morbidly obese patients improves the atherogenic qualitative properties of the plasma lipoproteins. Atherosclerosis, 2014, 234, 200-205.	0.4	29
58	Quantification of In Vitro Macrophage Cholesterol Efflux and In Vivo Macrophage-Specific Reverse Cholesterol Transport. Methods in Molecular Biology, 2015, 1339, 211-233.	0.4	29
59	Acute Psychological Stress Accelerates Reverse Cholesterol Transport via Corticosterone-Dependent Inhibition of Intestinal Cholesterol Absorption. Circulation Research, 2012, 111, 1459-1469.	2.0	28
60	Roles of cysteines in human lecithin:cholesterol acyltransferase. Biochemistry, 1993, 32, 3089-3094.	1.2	26
61	Folic acid supplementation delays atherosclerotic lesion development in apoE-deficient mice. Life Sciences, 2007, 80, 638-643.	2.0	26
62	Deficiency in monocyte chemoattractant protein-1 modifies lipid and glucose metabolism. Experimental and Molecular Pathology, 2007, 83, 361-366.	0.9	26
63	Comparison of the Abbott IMx® and a High-Performance Liquid Chromatography Method for Measuring Total Plasma Homocysteine. Clinical Chemistry and Laboratory Medicine, 2000, 38, 327-9.	1.4	25
64	Which Cholesterol Are We Measuring with the Roche Direct, Homogeneous LDL-C Plus Assay?. Clinical Chemistry, 2001, 47, 124-126.	1.5	25
65	Mechanisms of HDL deficiency in mice overexpressing human apoA-II. Journal of Lipid Research, 2002, 43, 1734-1742.	2.0	25
66	Effect of atorvastatin on lipoprotein (a) and interleukin-10: A randomized placebo-controlled trial. Diabetes and Metabolism, 2011, 37, 124-130.	1.4	25
67	Differential effects of gemfibrozil and fenofibrate on reverse cholesterol transport from macrophages to feces in vivo. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 104-110.	1.2	25
68	Lipoprotein hydrophobic core lipids are partially extruded to surface in smaller HDL: "Herniated―HDL, a common feature in diabetes. Scientific Reports, 2016, 6, 19249.	1.6	25
69	Genome-wide linkage analysis for identifying quantitative trait loci involved in the regulation of lipoprotein a (Lpa) levels. European Journal of Human Genetics, 2008, 16, 1372-1379.	1.4	24
70	Hepatic lipase- and endothelial lipase-deficiency in mice promotes macrophage-to-feces RCT and HDL antioxidant properties. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 691-697.	1.2	24
71	ApoA-IMALLORCA impairs LCAT activation and induces dominant familial hypoalphalipoproteinemia. Journal of Lipid Research, 2002, 43, 115-123.	2.0	24
72	Free cholesterol deposition in the cornea of human apolipoprotein A-II transgenic mice with functional lecithin: Cholesterol acyltransferase deficiency. Metabolism: Clinical and Experimental, 1999, 48, 415-421.	1.5	23

FRANCISCO BLANCO-VACA

#	Article	IF	CITATIONS
73	Inaccuracy of Calculated LDL-Cholesterol in Type 2 Diabetes: Consequences for Patient Risk Classification and Therapeutic Decisions. Clinical Chemistry, 2000, 46, 1830-1832.	1.5	23
74	Phytosterol-mediated inhibition of intestinal cholesterol absorption is independent of ATP-binding cassette transporter A1. British Journal of Nutrition, 2006, 95, 618-622.	1.2	23
75	PPAR-β/Î ^{\prime} activation promotes phospholipid transfer protein expression. Biochemical Pharmacology, 2015, 94, 101-108.	2.0	23
76	Remarkable quantitative and qualitative differences in HDL after niacin or fenofibrate therapy in type 2 diabetic patients. Atherosclerosis, 2015, 238, 213-219.	0.4	23
77	Turpentine-induced inflammation reduces the hepatic expression of the multiple drug resistance gene, the plasma cholesterol concentration and the development of atherosclerosis in apolipoprotein E deficient mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1733, 192-198.	1.2	22
78	Chronic intermittent psychological stress promotes macrophage reverse cholesterol transport by impairing bile acid absorption in mice. Physiological Reports, 2015, 3, e12402.	0.7	21
79	Human hepatic lipase overexpression in mice induces hepatic steatosis and obesity through promoting hepatic lipogenesis and white adipose tissue lipolysis and fatty acid uptake. PLoS ONE, 2017, 12, e0189834.	1.1	21
80	Paradoxical exacerbation of combined hyperlipidemia in human apolipoprotein A-II transgenic mice treated with fenofibrate. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1737, 130-137.	1.2	20
81	ATP-binding cassette G5/G8 deficiency causes hypertriglyceridemia by affecting multiple metabolic pathways. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 1186-1193.	1.2	20
82	Mast Cell Activation In Vivo Impairs the Macrophage Reverse Cholesterol Transport Pathway in the Mouse. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 520-527.	1.1	20
83	Pitfalls of Direct HDL-Cholesterol Measurements in Mouse Models of Hyperlipidemia and Atherosclerosis. Clinical Chemistry, 1999, 45, 1567-1569.	1.5	19
84	HDL and Lifestyle Interventions. Handbook of Experimental Pharmacology, 2015, 224, 569-592.	0.9	19
85	A rare STAP1 mutation incompletely associated with familial hypercholesterolemia. Clinica Chimica Acta, 2018, 487, 270-274.	0.5	19
86	Liver Triglyceride Content in HIV-1-Infected Patients on Combination Antiretroviral Therapy Studied with ¹ H-MR Spectroscopy. Antiviral Therapy, 2007, 12, 195-204.	0.6	19
87	Antiatherogenic role of high-density lipoproteins: insights from genetically engineered-mice. Frontiers in Bioscience - Landmark, 2006, 11, 1328.	3.0	18
88	Increased plasma levels of plant sterols and atherosclerosis: A controversial issue. Current Atherosclerosis Reports, 2009, 11, 391-398.	2.0	18
89	Apolipoprotein Modulation of Streptococcal Serum Opacity Factor Activity against Human Plasma High-Density Lipoproteins. Biochemistry, 2009, 48, 8070-8076.	1.2	18
90	Methionineâ€induced hyperhomocysteinemia impairs the antioxidant ability of highâ€density lipoproteins without reducing in vivo macrophageâ€specific reverse cholesterol transport. Molecular Nutrition and Food Research, 2013, 57, 1814-1824.	1.5	18

FRANCISCO BLANCO-VACA

#	Article	IF	CITATIONS
91	Novel Insights into the Role of HDL-Associated Sphingosine-1-Phosphate in Cardiometabolic Diseases. International Journal of Molecular Sciences, 2019, 20, 6273.	1.8	18
92	Molecular Basis of Fish-Eye Disease in a Patient From Spain. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 1382-1391.	1.1	18
93	The Aβ1–42/Aβ1–40 ratio in CSF is more strongly associated to tau markers and clinical progression than Aβ1–42 alone. Alzheimer's Research and Therapy, 2022, 14, 20.	3.0	18
94	ApoA-I(MALLORCA) impairs LCAT activation and induces dominant familial hypoalphalipoproteinemia. Journal of Lipid Research, 2002, 43, 115-23.	2.0	18
95	CETP activity variation in mice does not affect two major HDL antiatherogenic properties: Macrophage-specific reverse cholesterol transport and LDL antioxidant protection. Atherosclerosis, 2008, 196, 505-513.	0.4	17
96	Effect of PPAR-β∫δ agonist GW0742 treatment in the acute phase response and blood–brain barrier permeability following brain injury. Translational Research, 2017, 182, 27-48.	2.2	17
97	Manipulation of inflammation modulates hyperlipidemia in apolipoprotein E-deficient mice: A possible role for interleukin-6. Cytokine, 2006, 34, 224-232.	1.4	16
98	Consumption of polyunsaturated fat improves the saturated fatty acidâ€mediated impairment of HDL antioxidant potential. Molecular Nutrition and Food Research, 2015, 59, 1987-1996.	1.5	16
99	Disodium ascorbyl phytostanol phosphate (FM-VP4), a modified phytostanol, is a highly active hypocholesterolaemic agent that affects the enterohepatic circulation of both cholesterol and bile acids in mice. British Journal of Nutrition, 2010, 103, 153-160.	1.2	15
100	Molecular analysis of APOB, SAR1B, ANGPTL3, and MTTP in patients with primary hypocholesterolemia in a clinical laboratory setting: Evidence supporting polygenicity in mutation-negative patients. Atherosclerosis, 2019, 283, 52-60.	0.4	15
101	Evaluation of Two Nonisotopic Immunoassays for Determination of Glutamic Acid Decarboxylase and Tyrosine Phosphatase Autoantibodies in Serum. Clinical Chemistry, 2004, 50, 1378-1382.	1.5	14
102	Apolipoprotein A5 S19W May Play a Role in Dysbetalipoproteinemia in Patients with the Apo E2/E2 Genotype. Clinical Chemistry, 2006, 52, 1974-1975.	1.5	14
103	Phytosterols do not change susceptibility to obesity, insulin resistance, and diabetes induced by a high-fat diet in mice. Metabolism: Clinical and Experimental, 2008, 57, 1497-1501.	1.5	14
104	Enhanced vascular permeability facilitates entry of plasma HDL and promotes macrophage-reverse cholesterol transport from skin in mice. Journal of Lipid Research, 2015, 56, 241-253.	2.0	14
105	Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport. Scientific Reports, 2016, 6, 32105.	1.6	14
106	Autosomal dominant hypercholesterolemia in Catalonia: Correspondence between clinical-biochemical and genetic diagnostics in 967 patients studied in a multicenter clinical setting. Journal of Clinical Lipidology, 2018, 12, 1452-1462.	0.6	14
107	Overexpression of human apolipoprotein A-II in transgenic mice does not increase their susceptibility to insulin resistance and obesity. Diabetologia, 2002, 45, 600-601.	2.9	14
108	Phytosterol-mediated inhibition of intestinal cholesterol absorption in mice is independent of liver X receptor. Molecular Nutrition and Food Research, 2017, 61, 1700055.	1.5	13

#	Article	IF	CITATIONS
109	Altered HDL Remodeling and Functionality in Familial Hypercholesterolemia. Journal of the American College of Cardiology, 2018, 71, 466-468.	1.2	13
110	Impaired HDL (High-Density Lipoprotein)-Mediated Macrophage Cholesterol Efflux in Patients With Abdominal Aortic Aneurysm—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2750-2754.	1.1	13
111	Seeking Novel Targets for Improving In Vivo Macrophage-Specific Reverse Cholesterol Transport: Translating Basic Science into New Therapies for the Prevention and Treatment of Atherosclerosis. Current Vascular Pharmacology, 2011, 9, 220-237.	0.8	13
112	Thromboplastin-thrombomodulin-mediated Time and Serum Folate Levels Are Genetically Correlated with the Risk of Thromboembolic Disease: Results from the GAIT Project. Thrombosis and Haemostasis, 2002, 87, 68-73.	1.8	12
113	Administration of CORM-2 inhibits diabetic neuropathy but does not reduce dyslipidemia in diabetic mice. PLoS ONE, 2018, 13, e0204841.	1.1	12
114	A novel germline mutation in exon 5 of the multiple endocrine neoplasia type 1 gene. Journal of Molecular Medicine, 1998, 76, 837-839.	1.7	11
115	Atorvastatin does not decrease or delay diabetes onset in two different mouse models of type 1 diabetes. Diabetologia, 2005, 48, 1671-1673.	2.9	11
116	Genetically based hypertension generated through interaction of mild hypoalphalipoproteinemia and mild hyperhomocysteinemia. Journal of Hypertension, 2007, 25, 1597-1607.	0.3	11
117	Nicotinamide Prevents Apolipoprotein B-Containing Lipoprotein Oxidation, Inflammation and Atherosclerosis in Apolipoprotein E-Deficient Mice. Antioxidants, 2020, 9, 1162.	2.2	11
118	Therapeutic Potential of Emerging NAD+-Increasing Strategies for Cardiovascular Diseases. Antioxidants, 2021, 10, 1939.	2.2	11
119	Molecular Pathology of Multiple Endocrine Neoplasia Type I. Diagnostic Molecular Pathology, 1999, 8, 195-204.	2.1	10
120	Lipid Profile Rather Than the LCAT Mutation Explains Renal Disease in Familial LCAT Deficiency. Journal of Clinical Medicine, 2019, 8, 1860.	1.0	10
121	Disulfide linked dimers of apolipoprotein D in urine. Electrophoresis, 1993, 14, 1086-1087.	1.3	9
122	Determinants of plasma homocyst(e)ine in patients with nephrotic syndrome. Journal of Molecular Medicine, 2000, 78, 147-154.	1.7	9
123	Phenytoin treatment reduces atherosclerosis in mice through mechanisms independent of plasma HDL-cholesterol concentration. Atherosclerosis, 2004, 174, 275-285.	0.4	9
124	Differential intestinal mucosal protein expression in hypercholesterolemic mice fed a phytosterolâ€enriched diet. Proteomics, 2007, 7, 2659-2666.	1.3	9
125	Phenol-Enriched Virgin Olive Oil Promotes Macrophage-Specific Reverse Cholesterol Transport In Vivo. Biomedicines, 2020, 8, 266.	1.4	9
126	Nicotinamide Protects Against Dietâ€Induced Body Weight Gain, Increases Energy Expenditure, and Induces White Adipose Tissue Beiging. Molecular Nutrition and Food Research, 2021, 65, e2100111.	1.5	9

#	Article	IF	CITATIONS
127	Effects of site-directed mutagenesis on the serine residues of human lecithin: Cholesterol acyltransferase. Lipids, 1994, 29, 803-809.	0.7	8
128	Resveratrol administration or SIRT1 overexpression does not increase LXR signaling and macrophage-to-feces reverse cholesterol transport inÂvivo. Translational Research, 2013, 161, 110-117.	2.2	8
129	High-density lipoprotein cholesterol targeting for novel drug discovery: where have we gone wrong?. Expert Opinion on Drug Discovery, 2014, 9, 119-124.	2.5	8
130	Reverse Cholesterol Transport Dysfunction Is a Feature of Familial Hypercholesterolemia. Current Atherosclerosis Reports, 2021, 23, 29.	2.0	8
131	Standardization of a method to evaluate the antioxidant capacity of high-density lipoproteins. International Journal of Biomedical Science, 2009, 5, 402-10.	0.5	8
132	Patients with MEN-1 are more insulin-resistant than their non-affected relatives. European Journal of Internal Medicine, 2005, 16, 507-509.	1.0	7
133	Low-density lipoprotein receptor-related protein 1 deficiency in cardiomyocytes reduces susceptibility to insulin resistance and obesity. Metabolism: Clinical and Experimental, 2020, 106, 154191.	1.5	7
134	Homocyst(e)ine and the C677T mutation of methylenetetrahydrofolate reductase in survivors of premature myocardial infarction. Clinical Biochemistry, 2000, 33, 509-512.	0.8	6
135	A novel homozygous mutation causing lecithin–cholesterol acyltransferase deficiency in a proband of Romanian origin with a record of extreme gestational hyperlipidemia. Journal of Clinical Lipidology, 2017, 11, 1475-1479.e3.	0.6	6
136	Human ApoA-I Overexpression Enhances Macrophage-Specific Reverse Cholesterol Transport but Fails to Prevent Inherited Diabesity in Mice. International Journal of Molecular Sciences, 2019, 20, 655.	1.8	6
137	Polygenic Markers in Patients Diagnosed of Autosomal Dominant Hypercholesterolemia in Catalonia: Distribution of Weighted LDL-c-Raising SNP Scores and Refinement of Variant Selection. Biomedicines, 2020, 8, 353.	1.4	6
138	Molecular Diagnosis of Lecithin: Cholesterol Acyltransferase Deficiency in a Presymptomatic Proband. Clinical Chemistry and Laboratory Medicine, 1998, 36, 443-8.	1.4	5
139	Modulation of autoimmune arthritis severity in mice by apolipoprotein E (ApoE) and cholesterol. Clinical and Experimental Immunology, 2016, 186, 292-303.	1.1	5
140	LXR-dependent regulation of macrophage-specific reverse cholesterol transport is impaired in a model of genetic diabesity. Translational Research, 2017, 186, 19-35.e5.	2.2	5
141	(r)HDL in theranostics: how do we apply HDL's biology for precision medicine in atherosclerosis management?. Biomaterials Science, 2021, 9, 3185-3208.	2.6	5
142	Antiatherogenic potential of ezetimibe in sitosterolemia: Beyond plant sterols lowering. Atherosclerosis, 2017, 260, 94-96.	0.4	4
143	Evaluation of biochemical and hematological parameters in adults with Down syndrome. Scientific Reports, 2020, 10, 13755.	1.6	4
144	NAD+-Increasing Strategies to Improve Cardiometabolic Health?. Frontiers in Endocrinology, 2021, 12, 815565.	1.5	4

#	Article	IF	CITATIONS
145	Importance of cerebrospinal fluid storage conditions for the Alzheimer's disease diagnostics on an automated platform. Clinical Chemistry and Laboratory Medicine, 2022, 60, 1058-1063.	1.4	4
146	Patient presenting multiple consecutive venous and arterial thrombotic events despite intensive conventional treatment: response after normalization of plasma homocysteine and N-acetylcysteine therapy. Journal of Internal Medicine, 2003, 254, 397-400.	2.7	3
147	The Capacity of APOB-Depleted Plasma in Inducing ATP-Binding Cassette A1/G1-Mediated Macrophage Cholesterol Efflux—But Not Gut Microbial-Derived Metabolites—Is Independently Associated with Mortality in Patients with ST-Segment Elevation Myocardial Infarction. Biomedicines, 2021, 9, 1336.	1.4	3
148	Macrophage Cholesterol Efflux Downregulation Is Not Associated with Abdominal Aortic Aneurysm (AAA) Progression. Biomolecules, 2020, 10, 662.	1.8	2
149	Comprehensive Genetic Testing of CYP21A2: A Retrospective Analysis in Patients with Suspected Congenital Adrenal Hyperplasia. Journal of Clinical Medicine, 2021, 10, 1183.	1.0	2
150	Vitamin B3 impairs reverse cholesterol transport in Apolipoprotein E-deficient mice. ClÃnica E Investigación En Arteriosclerosis, 2019, 31, 251-260.	0.4	2
151	TMAO and Gut Microbial-Derived Metabolites TML and Î ³ BB Are Not Associated with Thrombotic Risk in Patients with Venous Thromboembolism. Journal of Clinical Medicine, 2022, 11, 1425.	1.0	2
152	Apo(B)-dependent dyslipidemic phenotypes in type 1 diabetic patients. European Journal of Internal Medicine, 2001, 12, 496-502.	1.0	1
153	La apolipoproteÃna A-II altera la composición apolipoproteica de HDL y su capacidad para activar la lipoproteÃna lipasa. ClÂnica E Investigación En Arteriosclerosis, 2010, 22, 192-197.	0.4	1
154	Genetic analysis does not confirm non-classical congenital adrenal hyperplasia in more than a third of the women followed with this diagnosis. Hormones, 2014, 13, 585-7.	0.9	1
155	Unraveling the functions of macrophage transporters by measuring macrophage-specific reverse cholesterol transport inÂvivo. Future Lipidology, 2007, 2, 609-613.	0.5	0
156	Efecto de la expresión de la PTEC, el gemfibrozilo y la rosiglitazona en el transporte inverso de colesterol desde macrófagos a heces in vivo. ClÃnica E Investigación En Arteriosclerosis, 2009, 21, 232-239.	0.4	0
157	Vitamin B3 impairs reverse cholesterol transport in Apolipoprotein E-deficient mice. ClÃnica E Investigación En Arteriosclerosis (English Edition), 2019, 31, 251-260.	0.1	0
158	A Quantitative Trait Locus for Cholesterol/Low Density Lipoprotein within the Promoter of the Factor IX Gene Blood, 2004, 104, 4000-4000.	0.6	0