## T Ryan Gregory

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11395933/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                  | IF  | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|
| 1  | Throwing away DNA: programmed downsizing in somatic nuclei. Trends in Genetics, 2022, 38, 483-500.                                                                       | 2.9 | 18            |
| 2  | What I learned from Denis Lynn. Aquatic Ecosystem Health and Management, 2021, 23, .                                                                                     | 0.3 | 0             |
| 3  | Long-term TE persistence even without beneficial insertion. BMC Genomics, 2021, 22, 260.                                                                                 | 1.2 | 0             |
| 4  | Small genomes in most mites (but not ticks). International Journal of Acarology, 2020, 46, 1-8.                                                                          | 0.3 | 6             |
| 5  | Transposable element persistence via potential genome-level ecosystem engineering. BMC Genomics, 2020, 21, 367.                                                          | 1.2 | 14            |
| 6  | Cetacean genome size diversity. Marine Mammal Science, 2019, 35, 1133-1140.                                                                                              | 0.9 | 1             |
| 7  | Genome size and brain cell density in birds. Canadian Journal of Zoology, 2018, 96, 379-382.                                                                             | 0.4 | 4             |
| 8  | The Genome Sizes of Ostracod Crustaceans Correlate with Body Size and Evolutionary History, but not Environment. Journal of Heredity, 2017, 108, 701-706.                | 1.0 | 17            |
| 9  | The dynamic evolutionary history of genome size in North American woodland salamanders. Genome, 2017, 60, 285-292.                                                       | 0.9 | 4             |
| 10 | Nuclear DNA content correlates with depth, body size, and diversification rate in amphipod crustaceans from ancient Lake Baikal, Russia. Genome, 2017, 60, 303-309.      | 0.9 | 22            |
| 11 | DNA barcoding as an aid for species identification in austral black flies (Insecta: Diptera: Simuliidae).<br>Genome, 2017, 60, 348-357.                                  | 0.9 | 5             |
| 12 | Qualitative and quantitative analysis of the genomes and chromosomes of spider monkeys (Primates:) Tj ETQq0                                                              | 0   | Overlock 10 1 |
| 13 | Molecular Phylogenetic Analysis of <i>Infidum similis</i> , Including Morphological Data and Estimation of its Genome Size. Journal of Parasitology, 2016, 102, 468-475. | 0.3 | 3             |
| 14 | Patterns of genome size variation in snapping shrimp. Genome, 2016, 59, 393-402.                                                                                         | 0.9 | 42            |
| 15 | Genome size estimates for Aplacophora, Polyplacophora and Scaphopoda: small solenogasters and sizeable scaphopods: TableÂ1 Journal of Molluscan Studies, 2015, , eyv054. | 0.4 | 3             |
| 16 | Applying ecological models to communities of genetic elements: the case of neutral theory.<br>Molecular Ecology, 2015, 24, 3232-3242.                                    | 2.0 | 34            |

| 17 | What's in a genome? The C-value enigma and the evolution of eukaryotic genome content.<br>Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140331. | 1.8 | 211 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
|    |                                                                                                                                                                                        |     |     |

18Do larger genomes contain more diverse transposable elements?. BMC Evolutionary Biology, 2015, 15,<br/>69.3.272

T RYAN GREGORY

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Case for Junk DNA. PLoS Genetics, 2014, 10, e1004351.                                                                                                                                                                   | 1.5  | 202       |
| 20 | First estimates of genome size in ribbon worms (phylum Nemertea) using flow cytometry and Feulgen<br>image analysis densitometry. Canadian Journal of Zoology, 2014, 92, 847-851.                                           | 0.4  | 6         |
| 21 | Conceptual and Empirical Challenges of Ascribing Functions to Transposable Elements. American Naturalist, 2014, 184, 14-24.                                                                                                 | 1.0  | 31        |
| 22 | Distinguishing between "Function" and "Effect" in Genome Biology. Genome Biology and Evolution, 2014, 6, 1234-1237.                                                                                                         | 1.1  | 79        |
| 23 | Metabolic â€~engines' of flight drive genome size reduction in birds. Proceedings of the Royal Society B:<br>Biological Sciences, 2014, 281, 20132780.                                                                      | 1.2  | 97        |
| 24 | Genome size estimates for crustaceans using Feulgen image analysis densitometry of ethanolâ€preserved<br>tissues. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85,<br>862-868. | 1.1  | 19        |
| 25 | Patterns of genome size diversity in bats (order Chiroptera). Genome, 2013, 56, 457-472.                                                                                                                                    | 0.9  | 23        |
| 26 | A novel application of ecological analyses to assess transposable element distributions in the genome of the domestic cow, <i>Bos taurus</i> . Genome, 2013, 56, 521-533.                                                   | 0.9  | 8         |
| 27 | Sizing up arthropod genomes: an evaluation of the impact of environmental variation on genome size estimates by flow cytometry and the use of qPCR as a method of estimation. Genome, 2013, 56, 505-510.                    | 0.9  | 27        |
| 28 | A first exploration of genome size diversity in sponges. Genome, 2013, 56, 451-456.                                                                                                                                         | 0.9  | 21        |
| 29 | Distinguishing ecological from evolutionary approaches to transposable elements. Biological<br>Reviews, 2013, 88, 573-584.                                                                                                  | 4.7  | 22        |
| 30 | Molecules and Macroevolution: A Gouldian View of the Genome. , 2013, , 53-72.                                                                                                                                               |      | 3         |
| 31 | Genome size and chromosome number in velvet worms (Onychophora). Genetica, 2012, 140, 497-504.                                                                                                                              | 0.5  | 16        |
| 32 | The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 2011, 479, 487-492.                                                                                                                         | 13.7 | 897       |
| 33 | Spore: Assessment of the Science in an Evolution-Oriented Game. Human-computer Interaction Series, 2010, , 71-85.                                                                                                           | 0.4  | 1         |
| 34 | Genome size is inversely correlated with relative brain size in parrots and cockatoos. Genome, 2009, 52, 261-267.                                                                                                           | 0.9  | 26        |
| 35 | The smallest avian genomes are found in hummingbirds. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3753-3757.                                                                                        | 1.2  | 43        |
| 36 | The genome sizes of megabats (Chiroptera: Pteropodidae) are remarkably constrained. Biology Letters, 2009, 5, 347-351.                                                                                                      | 1.0  | 42        |

T RYAN GREGORY

| #  | Article                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Genome size and wing parameters in passerine birds. Proceedings of the Royal Society B: Biological<br>Sciences, 2009, 276, 55-61.           | 1.2 | 63        |
| 38 | Patterns of genome size diversity in the ray-finned fishes. Hydrobiologia, 2009, 625, 1-25.                                                 | 1.0 | 49        |
| 39 | Artificial Selection and Domestication: Modern Lessons from Darwin's Enduring Analogy. Evolution:<br>Education and Outreach, 2009, 2, 5-27. | 0.3 | 55        |
| 40 | Understanding Natural Selection: Essential Concepts and Common Misconceptions. Evolution:<br>Education and Outreach, 2009, 2, 156-175.      | 0.3 | 280       |
| 41 | The Argument from Design: A Guided Tour of William Paley's Natural Theology (1802). Evolution:<br>Education and Outreach, 2009, 2, 602-611. | 0.3 | 4         |
| 42 | Conceptions of Evolution among Science Graduate Students. BioScience, 2009, 59, 792-799.                                                    | 2.2 | 7         |
| 43 | Evolution as Fact, Theory, and Path. Evolution: Education and Outreach, 2008, 1, 46-52.                                                     | 0.3 | 20        |
| 44 | Understanding Evolutionary Trees. Evolution: Education and Outreach, 2008, 1, 121-137.                                                      | 0.3 | 187       |
| 45 | Evolutionary Trends. Evolution: Education and Outreach, 2008, 1, 259-273.                                                                   | 0.3 | 13        |
| 46 | The Evolution of Complex Organs. Evolution: Education and Outreach, 2008, 1, 358-389.                                                       | 0.3 | 46        |
| 47 | Genome size, cell size, and the evolution of enucleated erythrocytes in attenuate salamanders.<br>Zoology, 2008, 111, 218-230.              | 0.6 | 55        |
| 48 | Population size and genome size in fishes: a closer look. Genome, 2008, 51, 309-313.                                                        | 0.9 | 30        |
| 49 | Eukaryotic genome size databases. Nucleic Acids Research, 2007, 35, D332-D338.                                                              | 6.5 | 371       |
| 50 | Genomic Diversity Research and the Role of Biorepositories. Cell Preservation Technology, 2007, 5, 93-103.                                  | 0.8 | 23        |
| 51 | The tardigrade Hypsibius dujardini, a new model for studying the evolution of development.<br>Developmental Biology, 2007, 312, 545-559.    | 0.9 | 119       |
| 52 | Synergy between sequence and size in Large-scale genomics. Nature Reviews Genetics, 2005, 6, 699-708.                                       | 7.7 | 281       |
| 53 | The C-value Enigma in Plants and Animals: A Review of Parallels and an Appeal for Partnership. Annals of Botany, 2005, 95, 133-146.         | 1.4 | 222       |
| 54 | Genome Size Evolution in Animals. , 2005, , 3-87.                                                                                           |     | 200       |

4

| <b>T</b> | Deres | Concord  |
|----------|-------|----------|
|          |       | CIDECUDA |
|          |       | OKLOOKI  |

| #  | Article                                                                                                                                                                                                       | IF       | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 55 | Preparation of Samples for Comparative Studies of Arthropod Chromosomes: Visualization, In Situ<br>Hybridization, and Genome Size Estimation. Methods in Enzymology, 2005, 395, 460-488.                      | 0.4      | 39        |
| 56 | Polyploidy in Animals. , 2005, , 427-517.                                                                                                                                                                     |          | 114       |
| 57 | Comparative Genomics in Prokaryotes. , 2005, , 585-675.                                                                                                                                                       |          | 23        |
| 58 | Macroevolution and the Genome. , 2005, , 679-729.                                                                                                                                                             |          | 35        |
| 59 | Macroevolution, hierarchy theory, and the C-value enigma. Paleobiology, 2004, 30, 179-202.                                                                                                                    | 1.3      | 96        |
| 60 | C-value estimates for 31 species of ladybird beetles (Coleoptera: Coccinellidae). Hereditas, 2004, 139, 121-127.                                                                                              | 0.5      | 28        |
| 61 | Genome size is not correlated positively with longevity in fishes (or homeotherms). Experimental<br>Gerontology, 2004, 39, 859-860.                                                                           | 1.2      | 15        |
| 62 | Insertion–deletion biases and the evolution of genome size. Gene, 2004, 324, 15-34.                                                                                                                           | 1.0      | 157       |
| 63 | Is small indel bias a determinant of genome size?. Trends in Genetics, 2003, 19, 485-488.                                                                                                                     | 2.9      | 47        |
| 64 | Variation across amphibian species in the size of the nuclear genome supports a pluralistic,<br>hierarchical approach to the C-value enigma. Biological Journal of the Linnean Society, 2003, 79,<br>329-339. | 0.7      | 67        |
| 65 | Genome size variation in lepidopteran insects. Canadian Journal of Zoology, 2003, 81, 1399-1405.                                                                                                              | 0.4      | 41        |
| 66 | Genome size estimates for two important freshwater molluscs, the zebra mussel (Dreissena) Tj ETQq0 0 0 rgBT /                                                                                                 | Overlock | 10        |
| 67 | The correlation between rDNA copy number and genome size in eukaryotes. Genome, 2003, 46, 48-50.                                                                                                              | 0.9      | 401       |
| 68 | From Pixels to Picograms. Journal of Histochemistry and Cytochemistry, 2002, 50, 735-749.                                                                                                                     | 1.3      | 233       |
| 69 | Genome size and developmental parameters in the homeothermic vertebrates. Genome, 2002, 45, 833-838.                                                                                                          | 0.9      | 46        |
| 70 | Genome size of the northern walkingstick, Diapheromera femorata (Phasmida: Heteronemiidae).<br>Canadian Journal of Zoology, 2002, 80, 1303-1305.                                                              | 0.4      | 6         |
| 71 | New insights into the distribution of polyploid Daphnia: the Holarctic revisited and Argentina explored. Molecular Ecology, 2002, 11, 1209-1217.                                                              | 2.0      | 51        |
| 72 | A BIRD'S-EYE VIEW OF THE C-VALUE ENIGMA: GENOME SIZE, CELL SIZE, AND METABOLIC RATE IN THE CLASS AVES. Evolution; International Journal of Organic Evolution, 2002, 56, 121-130.                              | 1.1      | 218       |

T Ryan Gregory

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Genome size estimates for some oligochaete annelids. Canadian Journal of Zoology, 2002, 80, 1485-1489.                                                                                                                      | 0.4 | 26        |
| 74 | Genome size and developmental complexity. Genetica, 2002, 115, 131-146.                                                                                                                                                     | 0.5 | 222       |
| 75 | Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biological Reviews, 2001, 76, 65-101.                                                                                               | 4.7 | 590       |
| 76 | Temporal control of DNA replication and the adaptive value of chromatin diminution in copepods. The<br>Journal of Experimental Zoology, 2001, 291, 310-316.                                                                 | 1.4 | 29        |
| 77 | Evolutionary implications of the relationship between genome size and body size in flatworms and copepods. Heredity, 2000, 84, 201-208.                                                                                     | 1.2 | 121       |
| 78 | Nucleotypic effects without nuclei: Genome size and erythrocyte size in mammals. Genome, 2000, 43, 895-901.                                                                                                                 | 0.9 | 94        |
| 79 | The Effects of Chronic Plasma Cortisol Elevation on the Feeding Behaviour, Growth, Competitive<br>Ability, and Swimming Performance of Juvenile Rainbow Trout. Physiological and Biochemical<br>Zoology, 1999, 72, 286-295. | 0.6 | 226       |
| 80 | Individual variation and interrelationships between swimming performance, growth rate, and feeding in juvenile rainbow trout (Oncorhynchus mykiss). Canadian Journal of Fisheries and Aquatic Sciences,                     | 0.7 | 95        |

In juvenile rainbow trout (C 1998, 55, 1583-1590.