
Bruce Mccune

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11395711/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lichen Community Development Along a Volcanic Disturbance Gradient at Mount St. Helens. , 2018, , 185-198.		1
2	Sensitivity of carbon stores in boreal forest moss mats - effects of vegetation, topography and climate. Plant and Soil, 2017, 421, 31-42.	1.8	11
3	Non-Native Plant Invasion along Elevation and Canopy Closure Gradients in a Middle Rocky Mountain Ecosystem. PLoS ONE, 2016, 11, e0147826.	1.1	44
4	Nonâ€parametric methods reveal nonâ€linear functional trait variation of lichens along environmental and fire age gradients. Journal of Vegetation Science, 2015, 26, 848-865.	1.1	40
5	Origin of the dust bunny distribution in ecological community data. Plant Ecology, 2015, 216, 645-656.	0.7	8
6	Lichen traits and species as indicators of vegetation and environment. Bryologist, 2015, 118, 252.	0.1	23
7	Lichen communities and species indicate climate thresholds in southeast and south-central Alaska, USA. Bryologist, 2014, 117, 241.	0.1	39
8	Wind farm potential is higher in prime habitat for uncommon soil crust lichens. Ecological Processes, 2013, 2, .	1.6	3
9	Detecting continuous lichen abundance for mapping winter caribou forage at landscape spatial scales. Remote Sensing of Environment, 2013, 137, 43-54.	4.6	27
10	Effect of inventory method on niche models: Random versus systematic error. Ecological Informatics, 2013, 18, 20-34.	2.3	9
11	Geographic, climatic, and chemical differentiation in the Hypogymnia imshaugii species complex (Lecanoromycetes, Parmeliaceae) in North America. Bryologist, 2011, 114, 526.	0.1	8
12	Quantifying ecological thresholds from response surfaces. Ecological Modelling, 2011, 222, 427-436.	1.2	24
13	Biotic soil crust lichen diversity and conservation in shrub-steppe habitats of Oregon and Washington. Bryologist, 2011, 114, 796.	0.1	23
14	Lichen habitat may be enhanced by thinning treatments in young Tsuga heterophylla-Pseudotsuga menziesii forests. Bryologist, 2010, 113, 292-307.	0.1	19
15	Forest floor lichen and bryophyte communities in thinned Pseudotsuga menziesii - Tsuga heterophylla forests. Bryologist, 2010, 113, 619-630.	0.1	6
16	Macrolichen communities in relation to soils and vegetation in the Noatak National Preserve, Alaska. Botany, 2009, 87, 241-252.	0.5	9
17	Grazing and Fire Impacts on Macrolichen Communities of The Seward Peninsula, Alaska, U.S.A. Bryologist, 2008, 111, 68-83.	0.1	25
18	Biotic soil crusts in relation to topography, cheatgrass and fire in the Columbia Basin, Washington. Bryologist, 2007, 110, 706-722.	0.1	56

BRUCE MCCUNE

#	Article	IF	CITATIONS
19	Epiphytic macrolichen communities in Pinus contorta peatlands in southeastern Alaska. Bryologist, 2007, 110, 521-532.	0.1	6
20	Improved estimates of incident radiation and heat load using non―parametric regression against topographic variables. Journal of Vegetation Science, 2007, 18, 751-754.	1.1	122
21	Estimating epiphytic macrolichen biomass from topography, stand structure and lichen community data. Journal of Vegetation Science, 2006, 17, 157-170.	1.1	44
22	Nonâ€parametric habitat models with automatic interactions. Journal of Vegetation Science, 2006, 17, 819-830.	1.1	170
23	Defining a Successional Metric for Lichen Communities in the Arctic Tundra. Arctic, Antarctic, and Alpine Research, 2006, 38, 373-377.	0.4	7
24	USE OF A SMOOTHER TO FORECAST OCCURRENCE OF EPIPHYTIC LICHENS UNDER ALTERNATIVE FOREST MANAGEMENT PLANS. , 2003, 13, 1110-1123.		27
25	The Importance of Hotspots for Lichen Diversity in Forests of Western Oregon. Bryologist, 2003, 106, 246-256.	0.1	32
26	Concentration of Rare Epiphytic Lichens Along Large Streams in a Mountainous Watershed in Oregon, U.S.A. Bryologist, 2002, 105, 439-450.	0.1	27
27	Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science, 2002, 13, 603-606.	1.1	866
28	Changes in Epiphyte Communities as the Shrub,Acer circinatum, Develops and Ages. Bryologist, 2001, 104, 274-281.	0.1	34
29	Lichen Communities as Indicators of Forest Health. Bryologist, 2000, 103, 353-356.	0.1	121
30	DISPERSAL LIMITATIONS OF EPIPHYTIC LICHENS RESULT IN SPECIES DEPENDENT ON OLD-GROWTH FORESTS. , 2000, 10, 789-799.		258
31	Epiphyte Habitats in an Old Conifer Forest in Western Washington, U.S.A Bryologist, 2000, 103, 417-427.	0.1	114
32	Ecology and Conservation of a Rare, Old-Growth-Associated Canopy Lichen in a Silvicultural Landscape. Bryologist, 2000, 103, 117-127.	0.1	34
33	Four Years of Epiphyte Colonization in Douglas-fir Forest Canopies. Bryologist, 2000, 103, 661-669.	0.1	40
34	REMNANT TREES AND CANOPY LICHEN COMMUNITIES IN WESTERN OREGON: A RETROSPECTIVE APPROACH. , 1997, 7, 1181-1187.		101
35	INFLUENCE OF NOISY ENVIRONMENTAL DATA ON CANONICAL CORRESPONDENCE ANALYSIS. Ecology, 1997, 78, 2617-2623.	1.5	202
36	Hotspots of Epiphytic Lichen Diversity in Two Young Managed Forests. Sitios Criticos de Diversidad de Liquenes Epifitos en Dos Bosques Jovenes Bajo Manejo. Conservation Biology, 1997, 11, 172-182.	2.4	157

BRUCE MCCUNE

#	Article	IF	CITATIONS
37	Regional Gradients in Lichen Communities of the Southeast United States. Bryologist, 1997, 100, 145.	0.1	81
38	Repeatability of Community Data: Species Richness versus Gradient Scores in Large-Scale Lichen Studies. Bryologist, 1997, 100, 40.	0.1	118
39	Improving community analysis with the Beals smoothing function. Ecoscience, 1994, 1, 82-86.	0.6	75
40	Gradients in Epiphyte Biomass in Three Pseudotsuga-Tsuga Forests of Different Ages in Western Oregon and Washington. Bryologist, 1993, 96, 405.	0.1	302
41	Differences in lichen and bryophyte communities between old-growth and managed second-growth forests in the Swan Valley, Montana. Canadian Journal of Botany, 1991, 69, 1745-1755.	1.2	261
42	Will similar forests develop on similar sites?. Canadian Journal of Botany, 1985, 63, 367-376.	1.2	172