
Thomas P Mathews

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11394101/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The cardiac-enriched microprotein mitolamban regulates mitochondrial respiratory complex assembly and function in mice. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	19
2	Loss of glucose 6-phosphate dehydrogenase function increases oxidative stress and glutaminolysis in metastasizing melanoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	35
3	BMAL1 drives muscle repair through control of hypoxic NAD ⁺ regeneration in satellite cells. Genes and Development, 2022, 36, 149-166.	2.7	13
4	A Short Isoform of Spermatogenic Enzyme GAPDHS Functions as a Metabolic Switch and Limits Metastasis in Melanoma. Cancer Research, 2022, 82, 1251-1266.	0.4	4
5	Compartmentalized metabolism supports midgestation mammalian development. Nature, 2022, 604, 349-353.	13.7	47
6	Purine nucleotide depletion prompts cell migration by stimulating the serine synthesis pathway. Nature Communications, 2022, 13, 2698.	5.8	25
7	Isotope tracing reveals glycolysis and oxidative metabolism in childhood tumors of multiple histologies. Med, 2021, 2, 395-410.e4.	2.2	21
8	Aspartate availability limits hematopoietic stem cell function during hematopoietic regeneration. Cell Stem Cell, 2021, 28, 1982-1999.e8.	5.2	38
9	Stable isotope tracing to assess tumor metabolism in vivo. Nature Protocols, 2021, 16, 5123-5145.	5.5	40
10	The requirement for pyruvate dehydrogenase in leukemogenesis depends on cell lineage. Cell Metabolism, 2021, 33, 1777-1792.e8.	7.2	34
11	Metabolomic profiling of rare cell populations isolated by flow cytometry from tissues. ELife, 2021, 10, .	2.8	47
12	Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature, 2020, 577, 115-120.	13.7	298
13	Lymph protects metastasizing melanoma cells from ferroptosis. Nature, 2020, 585, 113-118.	13.7	484
14	Reactive metabolite production is a targetable liability of glycolytic metabolism in lung cancer. Nature Communications, 2019, 10, 5604.	5.8	45
15	Quantification of hypoglycin A and methylenecyclopropylglycine in human plasma by HPLC-MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1095, 112-118.	1.2	5
16	Quantitative HPLC–MS/MS analysis of toxins in soapberry seeds: Methylenecyclopropylglycine and hypoglycin A. Food Chemistry, 2018, 264, 449-454.	4.2	5
17	Association of acute toxic encephalopathy with litchi consumption in an outbreak in Muzaffarpur, India, 2014: a case-control study. The Lancet Global Health, 2017, 5, e458-e466.	2.9	83
18	High-Confidence Qualitative Identification of Organophosphorus Nerve Agent Adducts to Human Butyrylcholinesterase, Analytical Chemistry, 2017, 89, 1955-1964	3.2	31

#	Article	IF	CITATIONS
19	A highâ€ŧhroughput UHPLC–MS/MS method for the quantification of five aged butyrylcholinesterase biomarkers from human exposure to organophosphorus nerve agents. Biomedical Chromatography, 2017, 31, e3830.	0.8	15
20	Quantification of Toxins in Soapberry (Sapindaceae) Arils: Hypoglycin A and Methylenecyclopropylglycine. Journal of Agricultural and Food Chemistry, 2016, 64, 5607-5613.	2.4	25
21	Human Phospholipase D Activity Transiently Regulates Pyrimidine Biosynthesis in Malignant Gliomas. ACS Chemical Biology, 2015, 10, 1258-1268.	1.6	20
22	Phospholipase D1 Couples CD4+ T Cell Activation to c-Myc-Dependent Deoxyribonucleotide Pool Expansion and HIV-1 Replication. PLoS Pathogens, 2015, 11, e1004864.	2.1	36
23	Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. Journal of Lipid Research, 2015, 56, 722-736.	2.0	264
24	Quantification of Metabolites for Assessing Human Exposure to Soapberry Toxins Hypoglycin A and Methylenecyclopropylglycine. Chemical Research in Toxicology, 2015, 28, 1753-1759.	1.7	25
25	Chemical modulation of glycerolipid signaling and metabolic pathways. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1060-1084.	1.2	27
26	Regulation of Phospholipase D Activity and Phosphatidic Acid Production after Purinergic (P2Y6) Receptor Stimulation. Journal of Biological Chemistry, 2013, 288, 20477-20487.	1.6	23
27	Sphingosine kinase typeÂ1 inhibition reveals rapid turnover of circulating sphingosine 1-phosphate. Biochemical Journal, 2011, 440, 345-353.	1.7	68
28	Development of Amidine-Based Sphingosine Kinase 1 Nanomolar Inhibitors and Reduction of Sphingosine 1-Phosphate in Human Leukemia Cells. Journal of Medicinal Chemistry, 2011, 54, 3524-3548.	2.9	71
29	A rapid assay for assessment of sphingosine kinase inhibitors and substrates. Analytical Biochemistry, 2011, 411, 230-235.	1.1	29
30	Discovery, Biological Evaluation, and Structureâ^'Activity Relationship of Amidine Based Sphingosine Kinase Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 2766-2778.	2.9	58
31	Synthesis and biological evaluation of sphingosine kinase substrates as sphingosine-1-phosphate receptor prodrugs. Bioorganic and Medicinal Chemistry, 2009, 17, 6123-6136.	1.4	29