
## Jieun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11393094/publications.pdf Version: 2024-02-01



LEUN KIM

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | CO and CO2 methanation over M (M Mn, Ce, Zr, Mg, K, Zn, or V)-promoted Ni/Al@Al2O3 catalysts.<br>Catalysis Today, 2020, 348, 80-88.                                                                                  | 4.4  | 39        |
| 2  | Nucleic Acid Engineering: RNA Following the Trail of DNA. ACS Combinatorial Science, 2016, 18, 87-99.                                                                                                                | 3.8  | 30        |
| 3  | Technological development of structural DNA/RNA-based RNAi systems and their applications.<br>Advanced Drug Delivery Reviews, 2016, 104, 29-43.                                                                      | 13.7 | 30        |
| 4  | Properties of a manganese oxide octahedral molecular sieve (OMS-2) for adsorptive desulfurization of fuel gas for fuel cell applications. Fuel Processing Technology, 2015, 131, 238-246.                            | 7.2  | 29        |
| 5  | Glycerol steam reforming on supported Ru-based catalysts for hydrogen production for fuel cells.<br>International Journal of Hydrogen Energy, 2013, 38, 11853-11862.                                                 | 7.1  | 27        |
| 6  | CO and CO methanation over Ni/Al@Al O3 core–shell catalyst. Catalysis Today, 2020, 356, 622-630.                                                                                                                     | 4.4  | 23        |
| 7  | Glycerol steam reforming on Ru catalysts supported on core-shell metal–ceramic microcomposites<br>developed by a microwave-induced hydrothermal method. Applied Catalysis A: General, 2015, 499,<br>197-204.         | 4.3  | 20        |
| 8  | Core–Shell Metal–Ceramic Microstructures: Mechanism of Hydrothermal Formation and Properties<br>as Catalyst Materials. Chemistry of Materials, 2016, 28, 2786-2794.                                                  | 6.7  | 20        |
| 9  | CO2 Methanation over Ni/Al@MAl2O4 (M = Zn, Mg, or Mn) Catalysts. Catalysts, 2019, 9, 599.                                                                                                                            | 3.5  | 20        |
| 10 | Metal–Organic Frameworks Derived from Zeroâ€Valent Metal Substrates: Mechanisms of Formation and<br>Modulation of Properties. Advanced Functional Materials, 2019, 29, 1808466.                                      | 14.9 | 18        |
| 11 | Oxidative Coupling of Methane over Mn2O3-Na2WO4/SiC Catalysts. Catalysts, 2019, 9, 363.                                                                                                                              | 3.5  | 17        |
| 12 | Synthesis and Properties of Core–Shell Metal–Ceramic Microstructures and their Application as<br>Heterogeneous Catalysts. ChemCatChem, 2014, 6, 2642-2647.                                                           | 3.7  | 15        |
| 13 | Selective CO oxidation in the hydrogen stream over Ru/Al@Al2O3 catalysts. Catalysis Today, 2020, 352, 148-156.                                                                                                       | 4.4  | 13        |
| 14 | Synthesis and Properties of Al2O3@Al Metal–Ceramic Core–Shell Microstructures for Catalyst<br>Applications. Topics in Catalysis, 2015, 58, 375-385.                                                                  | 2.8  | 11        |
| 15 | DNA aptamer-based carrier for loading proteins and enhancing the enzymatic activity. RSC Advances, 2017, 7, 1643-1645.                                                                                               | 3.6  | 10        |
| 16 | Markedly High Catalytic Activity of Supported Pt–MoO <sub><i>x</i></sub> Nanoclusters for<br>Methanol Reforming to Hydrogen at Low Temperatures. ChemCatChem, 2013, 5, 806-814.                                      | 3.7  | 9         |
| 17 | A new design and synthesis approach of supported metal catalysts via interfacial<br>hydrothermal-oxidation/reductive- exolution chemistry of Al metal substrate. Applied Catalysis A:<br>General, 2020, 594, 117461. | 4.3  | 9         |
| 18 | Effects of hydrothermal oxidation time of Al on the catalytic performance of Ru/Al@Al2O3 for selective oxidation of CO in H2. Fuel, 2021, 301, 121040.                                                               | 6.4  | 9         |

Јіеин Кім

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Giant Catalytic DNA Particles for Simple and Intuitive Detection of Pb2+. Nanoscale Research Letters, 2016, 11, 244.                                                                   | 5.7 | 6         |
| 20 | High performance of manganese oxide octahedral molecular sieve adsorbents for removing sulfur compounds from fuel gas. Korean Journal of Chemical Engineering, 2015, 32, 1766-1773.    | 2.7 | 3         |
| 21 | Investigation of Förster Resonance Energy Transfer (FRET) and Competition of Fluorescent Dyes on DNA Microparticles. International Journal of Molecular Sciences, 2015, 16, 7738-7747. | 4.1 | 2         |
| 22 | An enzymatically self-assembled DNA patch for enhanced blood coagulation. Chemical Communications, 2020, 56, 5917-5920.                                                                | 4.1 | 2         |
| 23 | Glycerol Steam Reforming for Hydrogen Production on Metal-ceramic Core-shell CoAl2O4@Al<br>Composite Structures. Clean Technology, 2015, 21, 68-75.                                    | 0.1 | 0         |