Lars Aagaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11391627/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNAi therapeutics: Principles, prospects and challenges. Advanced Drug Delivery Reviews, 2007, 59, 75-86.	6.6	780
2	Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Research, 2007, 35, 2333-2342.	6.5	308
3	Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Research, 2007, 35, 5154-5164.	6.5	249
4	Identification of endogenous retroviral reading frames in the human genome. Retrovirology, 2004, 1, 32.	0.9	148
5	Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Research and Therapy, 2015, 6, 144.	2.4	93
6	Molecular mechanisms in DM1 $\hat{a} \in$ " a focus on foci. Nucleic Acids Research, 2015, 43, 2433-2441.	6.5	75
7	Suppression of Choroidal Neovascularization by AAV-Based Dual-Acting Antiangiogenic Gene Therapy. Molecular Therapy - Nucleic Acids, 2019, 16, 38-50.	2.3	47
8	A Facile Lentiviral Vector System for Expression of Doxycycline-Inducible shRNAs: Knockdown of the Pre-miRNA Processing Enzyme Drosha. Molecular Therapy, 2007, 15, 938-945.	3.7	46
9	DDX6 regulates sequestered nuclear CUG-expanded DMPK-mRNA in dystrophia myotonica type 1. Nucleic Acids Research, 2014, 42, 7186-7200.	6.5	45
10	Multigenic lentiviral vectors for combined and tissue-specific expression of miRNA- and protein-based antiangiogenic factors. Molecular Therapy - Methods and Clinical Development, 2015, 2, 14064.	1.8	43
11	Adenoâ€associated virusâ€delivered polycistronic microRNAâ€clusters for knockdown of vascular endothelial growth factor <i>in vivo</i> . Journal of Gene Medicine, 2012, 14, 328-338.	1.4	40
12	Enhanced genome editing in mammalian cells with a modified dual-fluorescent surrogate system. Cellular and Molecular Life Sciences, 2016, 73, 2543-2563.	2.4	39
13	Gene conversion and purifying selection of a placenta-specific ERV-V envelope gene during simian evolution. BMC Evolutionary Biology, 2008, 8, 266.	3.2	31
14	Improved Lentiviral Gene Delivery to Mouse Liver by Hydrodynamic Vector Injection through Tail Vein. Molecular Therapy - Nucleic Acids, 2018, 12, 672-683.	2.3	22
15	Mitochondrial Spare Respiratory Capacity Is Negatively Correlated with Nuclear Reprogramming Efficiency. Stem Cells and Development, 2017, 26, 166-176.	1.1	21
16	Suppression of Choroidal Neovascularization in Mice by Subretinal Delivery of Multigenic Lentiviral Vectors Encoding Anti-Angiogenic MicroRNAs. Human Gene Therapy Methods, 2017, 28, 222-233.	2.1	20
17	The â^1⁄430-million-year-old ERVPb1 envelope gene is evolutionarily conserved among hominoids and Old World monkeys. Genomics, 2005, 86, 685-691.	1.3	16
18	Efficient replication of full-length murine leukemia viruses modified at the dimer initiation site regions. Virology, 2004, 318, 360-370.	1.1	15

Lars Aagaard

#	Article	IF	CITATIONS
19	Rational Design of Micro-RNA-like Bifunctional siRNAs Targeting HIV and the HIV Coreceptor CCR5. Molecular Therapy, 2010, 18, 796-802.	3.7	14
20	Efficient Knockdown and Lack of Passenger Strand Activity by Dicer-Independent shRNAs Expressed from Pol II-Driven MicroRNA Scaffolds. Molecular Therapy - Nucleic Acids, 2019, 14, 318-328.	2.3	13
21	Single AAV-mediated CRISPR-Nme2Cas9 efficiently reduces mutant hTTR expression in a transgenic mouse model of transthyretin amyloidosis. Molecular Therapy, 2022, 30, 164-174.	3.7	12
22	Improved microRNA suppression by WPRE-linked tough decoy microRNA sponges. Rna, 2017, 23, 1247-1258.	1.6	11
23	Silencing of endogenous envelope genes in human choriocarcinoma cells shows that envPb1 is involved in heterotypic cell fusions. Journal of General Virology, 2012, 93, 1696-1699.	1.3	10
24	A Novel Homologous Model for Gene Therapy of Dwarfism by Non-Viral Transfer of the Mouse Growth Hormone Gene into Immunocompetent Dwarf Mice. Current Gene Therapy, 2014, 14, 44-51.	0.9	10
25	Enhanced Tailored MicroRNA Sponge Activity of RNA Pol II-Transcribed TuD Hairpins Relative to Ectopically Expressed ciRS7-Derived circRNAs. Molecular Therapy - Nucleic Acids, 2018, 13, 365-375.	2.3	10
26	Fv1-like restriction of N-tropic replication-competent murine leukaemia viruses in mCAT-1-expressing human cells. Journal of General Virology, 2002, 83, 439-442.	1.3	10
27	VEGFA-targeting miR-agshRNAs combine efficacy with specificity and safety for retinal gene therapy. Molecular Therapy - Nucleic Acids, 2022, 28, 58-76.	2.3	6
28	Partial correction of the dwarf phenotype by non-viral transfer of the growth hormone gene in mice: Treatment age is critical. Growth Hormone and IGF Research, 2016, 26, 1-7.	0.5	5
29	Variants in the <scp>ethylmalonyl oA</scp> decarboxylase (<scp><i>ECHDC1</i></scp>) gene: a novel player in ethylmalonic aciduria?. Journal of Inherited Metabolic Disease, 2021, 44, 1215-1225.	1.7	4
30	Methylation silencing and reactivation of exogenous genes in lentivirus-mediated transgenic mice. Transgenic Research, 2021, 30, 63-76.	1.3	3
31	Induced pluripotent stem cells derived from a patient with autosomal dominant familial neurohypophyseal diabetes insipidus caused by a variant in the AVP gene. Stem Cell Research, 2017, 19, 37-42.	0.3	2
32	Simple Autofluorescence-Restrictive Sorting of eGFP+ RPE Cells Allows Reliable Assessment of Targeted Retinal Gene Therapy. Frontiers in Drug Delivery, 2022, 2, .	0.4	2
33	Suppression of choroidal neovascularization in mice by subretinal delivery of multigenic lentiviral vectors encoding anti-angiogenic microRNAs. Human Gene Therapy Methods, 2017, , .	2.1	1