Haozhi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11389346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase Transfer of Mo ₂ C Induced by Boron Doping to Boost Nitrogen Reduction Reaction Catalytic Activity. Advanced Functional Materials, 2022, 32, .	14.9	51
2	Boosting Energy Efficiency and Stability of Li–CO ₂ Batteries via Synergy between Ru Atom Clusters and Singleâ€Atom Ru–N ₄ sites in the Electrocatalyst Cathode. Advanced Materials, 2022, 34, e2200559.	21.0	83
3	Ni-Doped Mo ₂ C Anchored on Graphitized Porous Carbon for Boosting Electrocatalytic N ₂ Reduction. ACS Applied Materials & Interfaces, 2022, 14, 17273-17281.	8.0	12
4	Designing Nanoporous Coralâ€Like Pt Nanowires Architecture for Methanol and Ammonia Oxidation Reactions. Advanced Functional Materials, 2022, 32, .	14.9	27
5	Cobalt sulfides constructed heterogeneous interfaces decorated on N,S-codoped carbon nanosheets as a highly efficient bifunctional oxygen electrocatalyst. Journal of Materials Chemistry A, 2021, 9, 13926-13935.	10.3	27
6	Accelerated exciton dissociation and electron extraction across the metallic sulfide–carbon nitride ohmic interface for efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 2021, 9, 16522-16531.	10.3	24
7	Strainâ€Dependent Band Structures and Electronic Properties in Sb/Bi Lateral Heterostructures Calculated by First Principles. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100148.	2.4	9
8	Band and optical properties of arsenene and antimonene lateral heterostructure by first-principles calculations. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114933.	2.7	17
9	Mechanistic understanding of ethane dehydrogenation and aromatization over Zn/ZSM-5: effects of Zn modification and CO ₂ co-reactant. Catalysis Science and Technology, 2020, 10, 8359-8373.	4.1	17
10	Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nature Communications, 2020, 11, 2455.	12.8	265
11	Enhanced heterogeneous activation of peroxymonosulfate by Co and N codoped porous carbon for degradation of organic pollutants: the synergism between Co and N. Environmental Science: Nano, 2019, 6, 399-410.	4.3	129
12	Comparative computational study of CO2 dissociation and hydrogenation over Fe-M (M = Pd, Ni, Co) bimetallic catalysts: The effect of surface metal content. Journal of CO2 Utilization, 2019, 29, 179-195.	6.8	17
13	Origin of Pd-Cu bimetallic effect for synergetic promotion of methanol formation from CO2 hydrogenation. Journal of Catalysis, 2019, 369, 21-32.	6.2	80
14	A short review of recent advances in CO ₂ hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Advances, 2018, 8, 7651-7669.	3.6	499
15	Mechanistic Understanding of Alloy Effect and Water Promotion for Pd-Cu Bimetallic Catalysts in CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2018, 8, 4873-4892.	11.2	171
16	Facet effect on CO2 adsorption, dissociation and hydrogenation over Fe catalysts: Insight from DFT. Journal of CO2 Utilization, 2018, 26, 160-170.	6.8	35
17	DFT insight into the effect of potassium on the adsorption, activation and dissociation of CO ₂ over Fe-based catalysts. Physical Chemistry Chemical Physics, 2018, 20, 14694-14707.	2.8	40
18	Mechanistic Insight into C–C Coupling over Fe–Cu Bimetallic Catalysts in CO ₂ Hydrogenation. Journal of Physical Chemistry C, 2017, 121, 13164-13174.	3.1	91

#	Article	IF	CITATIONS
19	Computational Investigation of Fe–Cu Bimetallic Catalysts for CO ₂ Hydrogenation. Journal of Physical Chemistry C, 2016, 120, 9364-9373.	3.1	49
20	A computational study of adsorption and activation of CO 2 and H 2 over Fe(1 0 0) surface. Journal of CO2 Utilization, 2016, 15, 107-114.	6.8	38