Joseph P Huston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11388960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adult alcohol drinking and emotional tone are mediated by neutral sphingomyelinase during development in males. Cerebral Cortex, 2023, 33, 844-864.	1.6	9
2	The activation of D2-like receptors by intranasal dopamine facilitates the extinction of contextual fear and prevents conditioned fear-induced antinociception. Behavioural Brain Research, 2022, 417, 113611.	1.2	8
3	Neutral Sphingomyelinase is an Affective Valence-Dependent Regulator of Learning and Memory. Cerebral Cortex, 2021, 31, 1316-1333.	1.6	12
4	Neutral ceramidase is a marker for cognitive performance in rats and monkeys. Pharmacological Reports, 2021, 73, 73-84.	1.5	7
5	Functional Convergence of Motor and Social Processes in Lobule IV/V of the Mouse Cerebellum. Cerebellum, 2021, 20, 836-852.	1.4	19
6	Acute intranasal dopamine application counteracts the reversal learning deficit of spontaneously hypertensive rats in an attentional set-shifting task. Psychopharmacology, 2021, 238, 2419-2428.	1.5	4
7	Neutral sphingomyelinase mediates the co-morbidity trias of alcohol abuse, major depression and bone defects. Molecular Psychiatry, 2021, 26, 7403-7416.	4.1	20
8	Intranasal pregnenolone increases acetylcholine in frontal cortex, hippocampus, and amygdala—Preferentially in the hemisphere ipsilateral to the injected nostril. Journal of Neurochemistry, 2020, 153, 189-202.	2.1	1
9	Altered dopaminergic pathways and therapeutic effects of intranasal dopamine in two distinct mouse models of autism. Molecular Brain, 2020, 13, 111.	1.3	43
10	The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neuroscience and Biobehavioral Reviews, 2020, 113, 373-407.	2.9	84
11	Intranasal dopamine attenuates fear responses induced by electric shock to the foot and by electrical stimulation of the dorsal periaqueductal gray matter. Journal of Psychopharmacology, 2019, 33, 1524-1532.	2.0	7
12	Disrupted-in-Schizophrenia 1 (DISC1) Overexpression and Juvenile Immune Activation Cause Sex-Specific Schizophrenia-Related Psychopathology in Rats. Frontiers in Psychiatry, 2019, 10, 222.	1.3	15
13	Anxiogenic-like behavior and deficient attention/working memory in rats expressing the human DISC1 gene. Pharmacology Biochemistry and Behavior, 2019, 179, 73-79.	1.3	16
14	Aβ dimers induce behavioral and neurochemical deficits of relevance to early Alzheimer's disease. Neurobiology of Aging, 2018, 69, 1-9.	1.5	14
15	Deficits in episodic memory and mental time travel in patients with post-traumatic stress disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 83, 42-54.	2.5	35
16	Fellow travellers: Working memory and mental time travel in rodents. Behavioural Brain Research, 2018, 352, 2-7.	1.2	16
17	The Hippocampal-Cortical Networks Subserving Episodic Memory and Its Component Memory Systems for Object, Place and Temporal Order. Handbook of Behavioral Neuroscience, 2018, , 205-215.	0.7	1
18	Quantitative Proteomics of Synaptosomal Fractions in a Rat Overexpressing Human DISC1 Gene Indicates Profound Synaptic Dysregulation in the Dorsal Striatum. Frontiers in Molecular Neuroscience, 2018, 11, 26.	1.4	19

#	Article	IF	CITATIONS
19	Interaction between the medial prefrontal cortex and hippocampal CA1 area is essential for episodic-like memory in rats. Neurobiology of Learning and Memory, 2017, 141, 72-77.	1.0	30
20	Intra-nasal dopamine alleviates cognitive deficits in tgDISC1 rats which overexpress the human DISC1 gene. Neurobiology of Learning and Memory, 2017, 146, 12-20.	1.0	24
21	The medial prefrontal cortex—lateral entorhinal cortex circuit is essential for episodicâ€like memory and associative objectâ€recognition. Hippocampus, 2016, 26, 633-645.	0.9	88
22	A sphingolipid mechanism for behavioral extinction. Journal of Neurochemistry, 2016, 137, 589-603.	2.1	46
23	Chronic corticosterone treatment enhances extinction-induced depression in aged rats. Hormones and Behavior, 2016, 86, 21-26.	1.0	10
24	Promnestic effects of intranasally applied pregnenolone in rats. Neurobiology of Learning and Memory, 2016, 133, 185-195.	1.0	8
25	Rats bred for helplessness exhibit positive reinforcement learning deficits which are not alleviated by an antidepressant dose of the MAO-B inhibitor deprenyl. Neuroscience, 2016, 329, 83-92.	1.1	6
26	Evidence for a Specific Integrative Mechanism for Episodic Memory Mediated by AMPA/kainate Receptors in a Circuit Involving Medial Prefrontal Cortex and Hippocampal CA3 Region. Cerebral Cortex, 2016, 26, 3000-3009.	1.6	36
27	Concurrent assessment of memory for object and place: Evidence for different preferential importance of perirhinal cortex and hippocampus and for promnestic effect of a neurokinin-3 R agonist. Neurobiology of Learning and Memory, 2016, 130, 149-158.	1.0	20
28	Neuropharmacology of light-induced locomotor activation. Neuropharmacology, 2015, 95, 243-251.	2.0	13
29	The neurokinin-3 receptor agonist senktide facilitates the integration of memories for object, place and temporal order into episodic memory. Neurobiology of Learning and Memory, 2014, 114, 178-185.	1.0	20
30	Decreased methylation of the NK3 receptor coding gene (<i>TACR3</i>) after cocaineâ€induced place preference in marmoset monkeys. Addiction Biology, 2013, 18, 452-454.	1.4	32
31	Neurokinin3 receptor as a target to predict and improve learning and memory in the aged organism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15097-15102.	3.3	50
32	The interaction between the dopaminergic forebrain projections and the medial prefrontal cortex is critical for memory of objects: Implications for Parkinson's disease. Experimental Neurology, 2013, 247, 373-382.	2.0	38
33	Animal models of extinction-induced depression: Loss of reward and its consequences. Neuroscience and Biobehavioral Reviews, 2013, 37, 2059-2070.	2.9	42
34	What's conditioned in conditioned place preference?. Trends in Pharmacological Sciences, 2013, 34, 162-166.	4.0	234
35	Object recognition in the mouse. , 2013, , 331-337.		1
36	The NK3 receptor agonist senktide ameliorates scopolamine-induced deficits in memory for object, place and temporal order. Neurobiology of Learning and Memory, 2012, 97, 235-240.	1.0	17

#	Article	IF	CITATIONS
37	Toward an animal model of extinction-induced despair: focus on aging and physiological indices. Journal of Neural Transmission, 2009, 116, 1029-1036.	1.4	36
38	NK3 receptor agonism promotes episodic-like memory in mice. Neurobiology of Learning and Memory, 2008, 90, 420-425.	1.0	25
39	Extinction-induced "despair―in aged and adult rats: Links to neurotrophins in frontal cortex and hippocampus. Neurobiology of Learning and Memory, 2008, 90, 519-526.	1.0	23
40	Chapter 2.2 Animal episodic memory. Handbook of Behavioral Neuroscience, 2008, 18, 155-184.	0.7	18
41	Serotonin and psychostimulant addiction: Focus on 5-HT1A-receptors. Progress in Neurobiology, 2007, 81, 133-178.	2.8	297
42	"Despair―induced by extinction trials in the water maze: Relationship with measures of anxiety in aged and adult rats. Neurobiology of Learning and Memory, 2007, 87, 309-323.	1.0	68
43	Reinstatement of episodic-like memory in rats by neurokinin-1 receptor antagonism. Neurobiology of Learning and Memory, 2007, 87, 324-331.	1.0	32
44	Extinction-induced "despair―in the water maze, exploratory behavior and fear: Effects of chronic antidepressant treatment. Neurobiology of Learning and Memory, 2007, 87, 624-634.	1.0	43
45	The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neuroscience and Biobehavioral Reviews, 2007, 31, 673-704.	2.9	603
46	Neurokinin3 receptor activation potentiates the psychomotor and nucleus accumbens dopamine response to cocaine, but not its place conditioning effects. European Journal of Neuroscience, 2007, 25, 2457-2472.	1.2	21
47	NMDA receptor modulation by d-cycloserine promotes episodic-like memory in mice. Psychopharmacology, 2007, 193, 503-509.	1.5	37
48	Wistar rats show episodic-like memory for unique experiences. Neurobiology of Learning and Memory, 2006, 85, 173-182.	1.0	186
49	Integrated memory for objects, places, and temporal order: Evidence for episodic-like memory in mice. Neurobiology of Learning and Memory, 2005, 84, 214-221.	1.0	189
50	Episodic-like memory in mice: Simultaneous assessment of object, place and temporal order memory. Brain Research Protocols, 2005, 16, 10-19.	1.7	209
51	Higher Order Memories for Objects Encountered in Different Spatio-temporal Contexts in Mice: Evidence for Episodic Memory. Reviews in the Neurosciences, 2004, 15, 231-40.	1.4	36
52	Neurokinin-1 receptor antagonism by SR140333: enhanced in vivo ACh in the hippocampus and promnestic post-trial effects. Peptides, 2004, 25, 1959-1969.	1.2	24
53	Histidine-Decarboxylase Knockout Mice Show Deficient Nonreinforced Episodic Object Memory, Improved Negatively Reinforced Water-Maze Performance, and Increased Neo- and Ventro-Striatal Dopamine Turnover. Learning and Memory, 2003, 10, 510-519.	0.5	85
54	Chromosomal Loci Influencing the Susceptibility to the Parkinsonian Neurotoxin 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine. Journal of Neuroscience, 2003, 23, 8247-8253.	1.7	28

#	Article	IF	CITATIONS
55	Evidence for a Dissociation between MPTP Toxicity and Tyrosinase Activity Based on Congenic Mouse Strain Susceptibility. Experimental Neurology, 2001, 168, 116-122.	2.0	29
56	Behavioral phenotyping of the MPTP mouse model of Parkinson's disease. Behavioural Brain Research, 2001, 125, 109-125.	1.2	373
57	Opposite effects of substance P fragments C (anxiogenic) and N (anxiolytic) injected into dorsal periaqueductal gray. European Journal of Pharmacology, 2001, 432, 43-51.	1.7	32
58	Evidence for resistance to MPTP in C57BL/6 × BALA/c F1 hybrids as compared with their progenitor strains. NeuroReport, 2000, 11, 1093-1096.	0.6	26
59	Differential modulation of frontal cortex acetylcholine by injection of substance P into the nucleus basalis magnocellularis region in the freely-moving vs. the anesthetized preparation. Synapse, 2000, 38, 243-253.	0.6	39
60	MPTP susceptibility in the mouse: behavioral, neurochemical, and histological analysis of gender and strain differences. Behavior Genetics, 2000, 30, 171-182.	1.4	225
61	Anxiolytic-like effects in rats produced by ventral pallidal injection of both N- and C-terminal fragments of substance P. Neuroscience Letters, 2000, 283, 37-40.	1.0	31
62	Strain-dependent recovery of open-field behavior and striatal dopamine deficiency in the mouse MPTP model of Parkinson's disease. Neurotoxicity Research, 1999, 1, 41-56.	1.3	47
63	Reinforcing effects of neurokinin substance P in the ventral pallidum: mediation by the tachykinin NK1 receptor. European Journal of Pharmacology, 1999, 370, 93-99.	1.7	46
64	Anxiogenic effects of substance P and its 7–11 C terminal, but not the 1–7 N terminal, injected into the dorsal periaqueductal grayâ~†. Peptides, 1999, 20, 1437-1443.	1.2	47
65	Enhanced Learning by Posttrial Injection of H1-but Not H2-Histaminergic Antagonists into the Nucleus Basalis Magnocellularis Region. Neurobiology of Learning and Memory, 1999, 71, 308-324.	1.0	15
66	The neurokinin-1 receptor antagonist WIN51,708 attenuates the anxiolyticlike effects of ventralpallidal substance P injection. NeuroReport, 1999, 10, 2293-2296.	0.6	25
67	Anxiolytic-like action of neurokinin substance P administered systemically or into the nucleus basalis magnocellularis region. European Journal of Pharmacology, 1998, 354, 123-133.	1.7	60
68	Aversive effects of the C-fragment of Substance P in the dorsal periaqueductal gray matter. Experimental Brain Research, 1998, 123, 84-89.	0.7	37
69	Increased levels of extracellular dopamine in neostriatum and nucleus accumbens after histamine H1 receptor blockade. Naunyn-Schmiedeberg's Archives of Pharmacology, 1998, 358, 423-429.	1.4	65
70	Evidence for anatomical specificity for the reinforcing effects of SP in the nucleus basalis magnocellularis. NeuroReport, 1998, 9, 7-10.	0.6	21
71	Infusions of Tyrosine Hydroxylase Antisense Oligodeoxynucleotide into Substantia Nigra of the Rat: Effects on Tyrosine Hydroxylase mRNA and Protein Content, Striatal Dopamine Release and Behaviour. European Journal of Neuroscience, 1997, 9, 210-220.	1.2	8
72	The role of neuropeptides in learning: focus on the neurokinin substance P. Behavioural Brain Research, 1995, 66, 117-127.	1.2	138

#	Article	IF	CITATIONS
73	Substance P decreases extracellular concentrations of acetylcholine in neostriatum and nucleus accumbens in vivo: Possible relevance for the central processing of reward and aversion. Behavioural Brain Research, 1994, 63, 213-219.	1.2	45
74	Chronic administration of neurokinin SP improves maze performance in aged Rattus norvegicus. Behavioral and Neural Biology, 1994, 62, 110-120.	2.3	33
75	Facilitation of tunnel maze performance by systemic injection of the neurokinin substance P. Peptides, 1993, 14, 85-95.	1.2	12
76	The C-terminal fragment of substance P enhances dopamine release in nucleus accumbens but not in neostriatum in freely moving rats. Brain Research, 1992, 592, 181-186.	1.1	36
77	Effects of substance P on extracellular dopamine in neostriatum and nucleus accumbens. European Journal of Pharmacology, 1992, 216, 103-107.	1.7	59
78	Positively reinforcing effects of the neurokinin substance P in the basal forebrain: Mediation by its C-terminal sequence. Experimental Neurology, 1992, 115, 282-291.	2.0	38
79	Enhanced learning produced by injection of neurokinin substance P into the region of the nucleus basalis magnocellularis: Mediation by the N-terminal sequence. Experimental Neurology, 1992, 118, 302-308.	2.0	18
80	Lateralized changes in behavior and striatal dopamine release following unilateral tactile stimulation of the perioral region: a microdialysis study. Brain Research, 1991, 553, 318-322.	1.1	32
81	Asymmetries in thigmotactic scanning: evidence for a role of dopaminergic mechanisms. Psychopharmacology, 1991, 103, 19-27.	1.5	28
82	The relationship between reinforcement and memory: Parallels in the rewarding and mnemonic effects of the neuropeptide substance P. Neuroscience and Biobehavioral Reviews, 1989, 13, 171-180.	2.9	101
83	Interhemispheric relationship between lateral hypothalamic self-stimulation and the region of the nucleus tegmenti pedunculo-pontinus. Brain Research, 1989, 487, 321-334.	1.1	31
84	Enhanced inhibitory avoidance learning produced by post-trial injections of substance P into the basal forebrain. Behavioral and Neural Biology, 1988, 49, 374-385.	2.3	51
85	Facilitation of conditioned inhibitory avoidance by post-trial peripheral injection of substance P1. Pharmacology Biochemistry and Behavior, 1986, 25, 469-472.	1.3	36
86	Central action of substance P: Possible role in reward. Behavioral and Neural Biology, 1985, 43, 100-108.	2.3	39
87	Up-hill avoidance: A new passive-avoidance task. Physiology and Behavior, 1979, 22, 775-776.	1.0	22
88	Memory facilitation by posttrial hypothalamic stimulation and other reinforcers: A central theory of reinforcement. Biobehavioral Reviews, 1977, 1, 143-150.	1.4	98