Rubens Maciel Filho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11387937/publications.pdf

Version: 2024-02-01

163 7,618 papers citations

47006 47 h-index 82 g-index

165 all docs 165 docs citations 165 times ranked 8209 citing authors

#	Article	IF	Citations
1	Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnology Advances, 2012, 30, 321-328.	11.7	929
2	Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresource Technology, 2012, 103, 152-161.	9.6	294
3	Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. Journal of Cranio-Maxillo-Facial Surgery, 2014, 42, 1877-1884.	1.7	277
4	Production of bioethanol and other bio-based materials from sugarcane bagasse: Integration to conventional bioethanol production process. Chemical Engineering Research and Design, 2009, 87, 1206-1216.	5.6	262
5	Challenges and opportunities in lactic acid bioprocess designâ€"From economic to production aspects. Biochemical Engineering Journal, 2018, 133, 219-239.	3.6	223
6	Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects. Renewable and Sustainable Energy Reviews, 2018, 94, 998-1023.	16.4	203
7	Second generation ethanol in Brazil: Can it compete with electricity production?. Bioresource Technology, 2011, 102, 8964-8971.	9.6	188
8	Sugarcane processing for ethanol and sugar in Brazil. Environmental Development, 2015, 15, 35-51.	4.1	177
9	Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems. Energy, 2011, 36, 3691-3703.	8.8	157
10	Biorefineries for the production of first and second generation ethanol and electricity from sugarcane. Applied Energy, 2013, 109, 72-78.	10.1	144
11	Environmental and economic assessment of sugarcane first generation biorefineries in Brazil. Clean Technologies and Environmental Policy, 2012, 14, 399-410.	4.1	136
12	Lactic Acid Production to Purification: A Review. BioResources, 2017, 12, 4364-4383.	1.0	126
13	Lactic acid production to purification: A review. BioResources, 2017, 12, 4364-4383.	1.0	125
14	Lime Pretreatment of Sugarcane Bagasse for Bioethanol Production. Applied Biochemistry and Biotechnology, 2009, 153, 139-150.	2.9	120
15	Butanol production in a first-generation Brazilian sugarcane biorefinery: Technical aspects and economics of greenfield projects. Bioresource Technology, 2013, 135, 316-323.	9.6	111
16	Bioproduction of butanol in bioreactors: New insights from simultaneous in situ butanol recovery to eliminate product toxicity. Biotechnology and Bioengineering, 2011, 108, 1757-1765.	3.3	105
17	Customised titanium implant fabricated in additive manufacturing for craniomaxillofacial surgery. Virtual and Physical Prototyping, 2014, 9, 115-125.	10.4	101
18	Integration of microalgae production with industrial biofuel facilities: A critical review. Renewable and Sustainable Energy Reviews, 2018, 82, 1376-1392.	16.4	99

#	Article	IF	CITATIONS
19	Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis and fermentation of sugarcane bagasse to ethanol. Fuel, 2014, 136, 349-357.	6.4	98
20	Energy Requirements for Butanol Recovery Using the Flash Fermentation Technology. Energy & Energy Fuels, 2011, 25, 2347-2355.	5.1	90
21	Simulation of integrated first and second generation bioethanol production from sugarcane: comparison between different biomass pretreatment methods. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 955-966.	3.0	89
22	Improving second generation ethanol production through optimization of first generation production process from sugarcane. Energy, 2012, 43, 246-252.	8.8	87
23	Comparison of several methods for effective lipid extraction from wet microalgae using green solvents. Renewable Energy, 2019, 143, 130-141.	8.9	85
24	Biodiesel Production from Castor Oil: Optimization of Alkaline Ethanolysis. Energy &	5.1	83
25	Cogeneration in integrated first and second generation ethanol from sugarcane. Chemical Engineering Research and Design, 2013, 91, 1411-1417.	5.6	81
26	Utilization of pentoses from sugarcane biomass: Techno-economics of biogas vs. butanol production. Bioresource Technology, 2013, 142, 390-399.	9.6	81
27	Are ionic liquids eco-friendly?. Renewable and Sustainable Energy Reviews, 2022, 157, 112039.	16.4	81
28	Low carbon biofuels and the New Brazilian National Biofuel Policy (RenovaBio): A case study for sugarcane mills and integrated sugarcane-microalgae biorefineries. Renewable and Sustainable Energy Reviews, 2019, 115, 109365.	16.4	80
29	Considerations on the crystallization modeling: Population balance solution. Computers and Chemical Engineering, 2007, 31, 206-218.	3.8	78
30	Evaluation of process configurations for second generation integrated with first generation bioethanol production from sugarcane. Fuel Processing Technology, 2013, 109, 84-89.	7.2	76
31	Biodiesel production from microalgae by direct transesterification using green solvents. Renewable Energy, 2020, 160, 1283-1294.	8.9	76
32	Recent advances in lipid extraction using green solvents. Renewable and Sustainable Energy Reviews, 2020, 133, 110289.	16.4	73
33	Evaluation of optimization techniques for parameter estimation: Application to ethanol fermentation considering the effect of temperature. Process Biochemistry, 2006, 41, 1682-1687.	3.7	72
34	Botryococcus braunii for biodiesel production. Renewable and Sustainable Energy Reviews, 2016, 64, 260-270.	16.4	72
35	Hydrodynamics and mass transfer in bubble column, conventional airlift, stirred airlift and stirred tank bioreactors, using viscous fluid: A comparative study. Biochemical Engineering Journal, 2017, 118, 70-81.	3.6	71
36	Assessment of <i>in situ</i> butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation. Journal of Chemical Technology and Biotechnology, 2012, 87, 334-340.	3.2	69

#	Article	IF	Citations
37	Improvements in Biobutanol Fermentation and Their Impacts on Distillation Energy Consumption and Wastewater Generation. Bioenergy Research, 2012, 5, 504-514.	3.9	65
38	Functionalization of Ti6Al4V scaffolds produced by direct metal laser for biomedical applications. Materials and Design, 2015, 83, 6-13.	7.0	57
39	Biodiesel Production from Integration Between Reaction and Separation System: Reactive Distillation Process. Applied Biochemistry and Biotechnology, 2010, 161, 245-254.	2.9	55
40	Electrospun polyurethane membranes for Tissue Engineering applications. Materials Science and Engineering C, 2017, 72, 113-117.	7.3	55
41	A Comparison between Lime and Alkaline Hydrogen Peroxide Pretreatments of Sugarcane Bagasse for Ethanol Production. Applied Biochemistry and Biotechnology, 2008, 148, 45-58.	2.9	51
42	Cardiac tissue engineering: current state-of-the-art materials, cells and tissue formation. Einstein (Sao Paulo, Brazil), 2018, 16, eRB4538.	0.7	51
43	Dynamic modelling of a three-phase catalytic slurry reactor. Chemical Engineering Science, 2001, 56, 6055-6061.	3.8	50
44	A Comparison Between Lime and Alkaline Hydrogen Peroxide Pretreatments of Sugarcane Bagasse for Ethanol Production. Applied Biochemistry and Biotechnology, 2008, 144, 87-100.	2.9	50
45	Limonene epoxidation with H2O2 promoted by Al2O3: Kinetic study, experimental design. Journal of Catalysis, 2014, 319, 71-86.	6.2	50
46	Beyond ethanol, sugar, and electricity: a critical review of product diversification in Brazilian sugarcane mills. Biofuels, Bioproducts and Biorefining, 2019, 13, 809-821.	3.7	50
47	Epoxy monomers obtained from castor oil using a toxicity-free catalytic system. Journal of Molecular Catalysis A, 2017, 426, 550-556.	4.8	49
48	Enzymatic hydrolysis of sugarcane bagasse for bioethanol production: determining optimal enzyme loading using neural networks. Journal of Chemical Technology and Biotechnology, 2010, 85, 983-992.	3.2	48
49	Purification of Lactic Acid Produced by Fermentation: Focus on Non-traditional Distillation Processes. Separation and Purification Reviews, 2017, 46, 241-254.	5.5	46
50	Biodiesel purification by column chromatography and liquid-liquid extraction using green solvents. Fuel, 2019, 235, 1123-1130.	6.4	45
51	Production of Lactic Acid from Sucrose: Strain Selection, Fermentation, and Kinetic Modeling. Applied Biochemistry and Biotechnology, 2010, 161, 227-237.	2.9	43
52	Polymer grade l-lactic acid production from sugarcane bagasse hemicellulosic hydrolysate using Bacillus coagulans. Bioresource Technology Reports, 2019, 6, 26-31.	2.7	43
53	Mathematical modeling and optimal control strategy development for an adipic acid crystallization process. Chemical Engineering and Processing: Process Intensification, 2005, 44, 737-753.	3.6	42
54	Constructive learning neural network applied to identification and control of a fuel-ethanol fermentation process. Engineering Applications of Artificial Intelligence, 2009, 22, 201-215.	8.1	41

#	Article	IF	CITATIONS
55	Energy requirements during butanol production and in situ recovery by cyclic vacuum. Renewable Energy, 2012, 47, 183-187.	8.9	39
56	Current Advances in Separation and Purification of Second-Generation Lactic Acid. Separation and Purification Reviews, 2020, 49, 159-175.	5.5	39
57	Butanol production in a sugarcane biorefinery using ethanol as feedstock. Part I: Integration to a first generation sugarcane distillery. Chemical Engineering Research and Design, 2014, 92, 1441-1451.	5.6	38
58	Lactic acid purification by reactive distillation system using design of experiments. Chemical Engineering and Processing: Process Intensification, 2015, 95, 26-30.	3.6	34
59	Hydrous bioethanol production from sugarcane bagasse via energy self-sufficient gasification-fermentation hybrid route: Simulation and financial analysis. Journal of Cleaner Production, 2017, 168, 1625-1635.	9.3	34
60	Sugarcane bagasse gasification: Simulation and analysis of different operating parameters, fluidizing media, and gasifier types. Biomass and Bioenergy, 2019, 122, 433-445.	5.7	34
61	Neural network and hybrid model: a discussion about different modeling techniques to predict pulping degree with industrial data. Chemical Engineering Science, 2001, 56, 565-570.	3.8	33
62	Economic potential of 2-methyltetrahydrofuran (MTHF) and ethyl levulinate (EL) produced from hemicelluloses-derived furfural. Biomass and Bioenergy, 2018, 119, 492-502.	5.7	33
63	Optimization of a large scale industrial reactor by genetic algorithms. Chemical Engineering Science, 2008, 63, 330-341.	3.8	32
64	Kinetics of Lime Pretreatment of Sugarcane Bagasse to Enhance Enzymatic Hydrolysis. Applied Biochemistry and Biotechnology, 2011, 163, 612-625.	2.9	31
65	A roadmap for renewable C2–C3 glycols production: a process engineering approach. Green Chemistry, 2019, 21, 5168-5194.	9.0	31
66	Development of adaptive modeling techniques to describe the temperature-dependent kinetics of biotechnological processes. Biochemical Engineering Journal, 2007, 36, 157-166.	3.6	30
67	Lime Pretreatment and Fermentation of Enzymatically Hydrolyzed Sugarcane Bagasse. Applied Biochemistry and Biotechnology, 2013, 169, 1696-1712.	2.9	30
68	Towards enhanced n-butanol production from sugarcane bagasse hemicellulosic hydrolysate: Strain screening, and the effects of sugar concentration and butanol tolerance. Biomass and Bioenergy, 2019, 126, 190-198.	5.7	30
69	Acetone-free biobutanol production: Past and recent advances in the Isopropanol-Butanol-Ethanol (IBE) fermentation. Bioresource Technology, 2019, 287, 121425.	9.6	30
70	Butanol production in a sugarcane biorefinery using ethanol as feedstock. Part II: Integration to a second generation sugarcane distillery. Chemical Engineering Research and Design, 2014, 92, 1452-1462.	5.6	29
71	Evaluation of Tocopherol Recovery Through Simulation of Molecular Distillation Process. Applied Biochemistry and Biotechnology, 2004, 114, 689-712.	2.9	27
72	Potential of algal biofuel production in a hybrid photobioreactor. Chemical Engineering Science, 2017, 171, 282-292.	3.8	27

#	Article	IF	CITATIONS
73	Modeling ethanol production through gas fermentation: a biothermodynamics and mass transfer-based hybrid model for microbial growth in a large-scale bubble column bioreactor. Biotechnology for Biofuels, 2020, 13, 59.	6.2	27
74	Fuzzy Model-Based Predictive Hybrid Control of Polymerization Processes. Industrial & Engineering Chemistry Research, 2009, 48, 8542-8550.	3.7	26
75	Factorial design applied to concentrate bioactive component of Cymbopogon citratus essential oil using short path distillation. Chemical Engineering Research and Design, 2010, 88, 239-244.	5.6	26
76	Optimisation of a continuous flash fermentation for butanol production using the response surface methodology. Chemical Engineering Research and Design, 2010, 88, 562-571.	5.6	26
77	Influence of impeller type on hydrodynamics and gasâ€liquid massâ€transfer in stirred airlift bioreactor. AICHE Journal, 2015, 61, 3159-3171.	3.6	25
78	Detoxification of sugarcane-derived hemicellulosic hydrolysate using a lactic acid producing strain. Journal of Biotechnology, 2018, 278, 56-63.	3.8	25
79	Simulation of ethanol production from sugarcane in Brazil: economic study of an autonomous distillery. Computer Aided Chemical Engineering, 2010, 28, 733-738.	0.5	24
80	Factorial design technique applied to genetic algorithm parameters in a batch cooling crystallization optimisation. Computers and Chemical Engineering, 2005, 29, 2229-2241.	3.8	23
81	Evaluation of lactic acid purification from fermentation broth by hybrid short path evaporation using factorial experimental design. Separation and Purification Technology, 2014, 136, 233-240.	7.9	23
82	Sugarcane molasses fermentation with in situ gas stripping using low and moderate sugar concentrations for ethanol production: Experimental data and modeling. Biochemical Engineering Journal, 2016, 110, 152-161.	3.6	23
83	Laboratory extraction of microalgal lipids using sugarcane bagasse derived green solvents. Algal Research, 2018, 35, 292-300.	4.6	23
84	Evaluation of optimisation techniques and control variable formulations for a batch cooling crystallization process. Chemical Engineering Science, 2005, 60, 5312-5322.	3.8	22
85	Use of experimental design to investigate biodiesel production by multiple-stage Ultra-Shear reactor. Bioresource Technology, 2011, 102, 2672-2677.	9.6	22
86	A Simple Biorefinery Concept to Produce 2G-Lactic Acid from Sugar Beet Pulp (SBP): A High-Value Target Approach to Valorize a Waste Stream. Molecules, 2020, 25, 2113.	3.8	21
87	Dynamic modeling of syngas fermentation in a continuous stirredâ€ŧank reactor: Multiâ€ŧesponse parameter estimation and process optimization. Biotechnology and Bioengineering, 2019, 116, 2473-2487.	3.3	19
88	Study of kinetic parameters in a mechanistic model for bioethanol production through a screening technique and optimization. Bioprocess and Biosystems Engineering, 2009, 32, 673-680.	3.4	18
89	Evaluation of methyl chavicol concentration by different evaporation processes using central composite experimental design. Separation and Purification Technology, 2012, 98, 464-471.	7.9	18
90	Prior detection of genetic algorithm significant parameters: Coupling factorial design technique to genetic algorithm. Chemical Engineering Science, 2007, 62, 4780-4801.	3.8	17

#	Article	IF	Citations
91	Enabling butanol production from crude sugarcane bagasse hemicellulose hydrolysate by batch-feeding it into molasses fermentation. Industrial Crops and Products, 2020, 155, 112837.	5.2	17
92	Hybrid Neural Modeling Of Bioprocesses Using Functional Link Networks. Applied Biochemistry and Biotechnology, 2002, 98-100, 1009-1024.	2.9	16
93	A cognitive approach to develop dynamic models: Application to polymerization systems. Journal of Applied Polymer Science, 2007, 106, 981-992.	2.6	16
94	The Effect of Evaporator Temperature on Lactic Acid Purity and Recovery by Short Path Evaporation. Separation Science and Technology, 2015, 50, 1548-1553.	2.5	16
95	Process design and economics of a flexible ethanol-butanol plant annexed to a eucalyptus kraft pulp mill. Bioresource Technology, 2018, 250, 345-354.	9.6	16
96	Optimization Strategies Based on Sequential Quadratic Programming Applied for a Fermentation Process for Butanol Production. Applied Biochemistry and Biotechnology, 2009, 159, 366-381.	2.9	15
97	Optimisation of a fermentation process for butanol production by particle swarm optimisation (PSO). Journal of Chemical Technology and Biotechnology, 2010, 85, 934-949.	3.2	15
98	Fuzzy cognitive approach of a molecular distillation process. Chemical Engineering Research and Design, 2011, 89, 471-479.	5.6	15
99	Concentrating second-generation lactic acid from sugarcane bagasse via hybrid short path evaporation: Operational challenges. Separation and Purification Technology, 2019, 209, 26-31.	7.9	13
100	Process design and evaluation of syngas-to-ethanol conversion plants. Journal of Cleaner Production, 2020, 269, 122078.	9.3	13
101	Development of real-time state estimators for reaction–separation processes: A continuous flash fermentation as a study case. Chemical Engineering and Processing: Process Intensification, 2010, 49, 402-409.	3.6	12
102	Resolving mismatches in the flexible production of ethanol and butanol from eucalyptus wood with vacuum fermentation. Bioprocess and Biosystems Engineering, 2018, 41, 1651-1663.	3.4	12
103	Evaluation of the feasibility of ethanol and gasoline in solid oxide fuel cell vehicles in Brazil. International Journal of Hydrogen Energy, 2021, 46, 36381-36397.	7.1	12
104	Off-line optimization and control for real time integration of a three-phase hydrogenation catalytic reactor. Computers and Chemical Engineering, 2005, 29, 2485-2493.	3.8	11
105	Evaluation of control algorithms for three-phase hydrogenation catalytic reactor. Chemical Engineering Journal, 2008, 141, 250-263.	12.7	11
106	Simulation of the Azeotropic Distillation for Anhydrous Bioethanol Production: Study on the Formation of a Second Liquid Phase. Computer Aided Chemical Engineering, 2009, , 1143-1148.	0.5	11
107	Liquid–Liquid Equilibrium in Ternary Systems Present in Biodiesel Purification from Soybean Oil and Castor Oil at (298.2 and 333.2) K. Journal of Chemical & Engineering Data, 2013, 58, 605-610.	1.9	11
108	Isopropanol-butanol-ethanol (IBE) production in repeated-batch cultivation of Clostridium beijerinckii DSM 6423 immobilized on sugarcane bagasse. Fuel, 2020, 263, 116708.	6.4	11

#	Article	IF	CITATIONS
109	Biochemical conversion of sugarcane bagasse into the alcohol fuel mixture of isopropanol-butanol-ethanol (IBE): Is it economically competitive with cellulosic ethanol?. Bioresource Technology, 2020, 314, 123712.	9.6	11
110	Effects of cultivation conditions on Chlorella vulgaris and Desmodesmus sp. grown in sugarcane agro-industry residues. Bioresource Technology, 2021, 342, 125949.	9.6	11
111	Correlating biomass properties, gasification performance, and syngas applications of Brazilian feedstocks via simulation and multivariate analysis. Industrial Crops and Products, 2022, 181, 114808.	5.2	11
112	Control and Optimization of a Three Phase Industrial Hydrogenation Reactor. International Journal of Chemical Reactor Engineering, 2004, 2, .	1.1	10
113	Analysis of the particle swarm algorithm in the optimization of a three-phase slurry catalytic reactor. Computers and Chemical Engineering, 2011, 35, 2741-2749.	3.8	10
114	Economic and environmental assessment of integrated 1st and 2nd generation sugarcane bioethanol production evaluating different 2nd generation process alternatives. Computer Aided Chemical Engineering, 2012, 30, 177-181.	0.5	10
115	Cultivation of Chlamydomonas reinhardtii in Anaerobically Digested Vinasse for Bioethanol Production. Waste and Biomass Valorization, 2021, 12, 857-865.	3.4	10
116	Corrosion resistance improvement of additive manufactured scaffolds by anodizing. Electrochimica Acta, 2021, 366, 137423.	5.2	10
117	Reliability–Based Optimization using Surface Response Methodology to Split Heavy Petroleum Fractions by Centrifugal Molecular Distillation Process. Separation Science and Technology, 2012, 47, 1213-1233.	2.5	9
118	Non-linear multivariable predictive control of an alcoholic fermentation process using functional link networks. Brazilian Archives of Biology and Technology, 2005, 48, 7-18.	0.5	9
119	Evaluation of Optimization Techniques for an Extractive Alcoholic Fermentation Process. Applied Biochemistry and Biotechnology, 2004, 114, 485-496.	2.9	8
120	Different Strategies To Improve Lactic Acid Productivity Based on Microorganism Physiology and Optimum Operating Conditions. Industrial & Engineering Chemistry Research, 2018, 57, 10118-10125.	3.7	8
121	(Epoxidized castor oil \hat{a} e" citric acid) copolyester as a candidate polymer for biomedical applications. Journal of Polymer Research, 2019, 26, 1.	2.4	8
122	Mass and Heat Integration in Ethanol Production Mills for Enhanced Process Efficiency and Exergy-Based Renewability Performance. Processes, 2019, 7, 670.	2.8	8
123	Effect of light, CO2 and nitrate concentration on Chlorella vulgaris growth and composition in a flat-plate photobioreactor. Brazilian Journal of Chemical Engineering, 2021, 38, 251-263.	1.3	8
124	Bottlenecks and potentials for the gasification of lignocellulosic biomasses and Fischer-Tropsch synthesis: A case study on the production of advanced liquid biofuels in Brazil. Energy Conversion and Management, 2021, 245, 114629.	9.2	8
125	Thorough evaluation of the available light-duty engine technologies to reduce greenhouse gases emissions in Brazil. Journal of Cleaner Production, 2022, 358, 132051.	9.3	8
126	Fluid catalytic cracking optimisation using factorial design and genetic algorithm techniques. Canadian Journal of Chemical Engineering, 2013, 91, 279-290.	1.7	7

#	Article	IF	CITATIONS
127	Central composite experimental design applied to evaluate the lactic acid concentration by short path evaporation. Chemical Engineering and Processing: Process Intensification, 2017, 117, 89-94.	3.6	7
128	Influence of unit cell and geometry size on scaffolds electrochemical response. Journal of Electroanalytical Chemistry, 2019, 853, 113528.	3.8	7
129	Production of ethanol fuel via syngas fermentation: Optimization of economic performance and energy efficiency. Chemical Engineering Science: X, 2020, 5, 100056.	1.5	7
130	Modeling and optimization of pulp and paper processes using neural networks. Computers and Chemical Engineering, 1998, 22, S981-S984.	3.8	6
131	Development of a software for simulation analysis of the phenomenon of phase change of three-phase catalytic slurry reactor. Computers and Chemical Engineering, 2005, 29, 1369-1378.	3.8	6
132	A LabVIEW-based intelligent system for monitoring of bioprocesses. Computer Aided Chemical Engineering, 2009, , 309-314.	0.5	6
133	Real-time optimization for lactic acid production from sucrose fermentation by Lactobacillus plantarum. Computer Aided Chemical Engineering, 2011, 29, 1396-1400.	0.5	6
134	Biodegradability study of Egeria densa biomass using acid and basic pre-treatments for use in bioprocessing of energy products. Bioresource Technology Reports, 2019, 6, 279-284.	2.7	5
135	Polyurethane fibrous membranes tailored by rotary jet spinning for tissue engineering applications. Journal of Applied Polymer Science, 2020, 137, 48455.	2.6	5
136	Green production of limonene diepoxide for potential biomedical applications. Catalysis Today, 2022, 388-389, 288-300.	4.4	5
137	Graphical Analysis of Plant-Wide Heat Cascade for Increasing Energy Efficiency in the Production of Ethanol and Sugar from Sugarcane. Process Integration and Optimization for Sustainability, 2021, 5, 335-359.	2.6	5
138	Nanoparticle processes modelling: The role of key parameters for population balances for on-line crystallization processes applications. Powder Technology, 2010, 202, 89-94.	4.2	4
139	Influence of Residual Sugars on the Purification of Lactic Acid Using Short Path Evaporation. BioResources, 2017, 12, .	1.0	4
140	CO ₂ Gasification of Sugarcane Bagasse Char: Consideration of Pyrolysis Temperature, Silicon and Aluminum Contents, and Potassium Addition for Recirculation of Char. Energy & Sump; Fuels, 2020, 34, 16201-16211.	5.1	4
141	Multi-Objective Sustainability Optimization of Biomass Residues to Ethanol via Gasification and Syngas Fermentation: Trade-Offs between Profitability, Energy Efficiency, and Carbon Emissions. Fermentation, 2021, 7, 201.	3.0	4
142	Comparative Techno-Economic and Exergetic Analysis of Circulating and Dual Bed Biomass Gasification Systems. Frontiers in Chemical Engineering, 2021, 3, .	2.7	4
143	Isopropanol-butanol-ethanol production by cell-immobilized vacuum fermentation. Bioresource Technology, 2022, 344, 126313.	9.6	4
144	Detailed deterministic dynamic models for computer aided design of multiphase slurry catalytic reactor. Computer Aided Chemical Engineering, 2004, , 823-828.	0.5	3

#	Article	IF	Citations
145	Genetic Algorithms (Binary and Real Codes) for the Optimisation of a Fermentation Process for Butanol Production. International Journal of Chemical Reactor Engineering, 2010, 8, .	1.1	3
146	Optimization of a Three-Phase Catalytic Slurry Reactor Using Reduced Statistical Models. International Journal of Chemical Reactor Engineering, 2010, 8, .	1.1	2
147	Sustainable Aviation Fuels: Production, Use and Impact on Decarbonization., 2022,, 348-371.		2
148	Nonâ€Linear Predictive Control of a Threeâ€Phase Catalytic Reactor. Canadian Journal of Chemical Engineering, 2003, 81, 1109-1118.	1.7	1
149	Soft-Sensor for Real-Time Estimation of Ethanol Concentration in Continuous Flash Fermentation. Computer Aided Chemical Engineering, 2009, 27, 1653-1658.	0.5	1
150	An Evaluation of a Multi-method Tool for Real-Time Implementation of Two-layer Optimization. Computer Aided Chemical Engineering, 2009, 26, 537-541.	0.5	1
151	Advanced Control of a Continuous Solution Copolymerization Process. International Journal of Chemical Engineering, 2011, 2011, 1-17.	2.4	1
152	Estimation hydrodynamic parameters and mass transfer in a stirred airlift bioreactor using viscous fluids. New Biotechnology, 2012, 29, S213.	4.4	1
153	Evaluation of different cogeneration systems in first and second generation ethanol production from sugarcane. Computer Aided Chemical Engineering, 2012, , 172-176.	0.5	1
154	Evaluation of Hybrid Short Path Evaporation to Concentrate Lactic Acid and Sugars from Fermentation. BioResources, 2018, 13, .	1.0	1
155	Sugar Extraction via Moving-Bed Diffusers in Ethanol Production Industry: Phenomenological Modeling and Finite-Volumes Simulation. Industrial & Engineering Chemistry Research, 2018, 57, 13769-13782.	3.7	1
156	Optimization of Biomass Circulating Fluidized Bed Gasifier for Synthesis Applications using Simulation and Response Surface Methodology. Computer Aided Chemical Engineering, 2020, 48, 1585-1590.	0.5	1
157	Bone reconstruction surgery of complex craniomaxillofacial deformities using additive manufacturing customized implants - a case report. Rapid Prototyping Journal, 2021, 27, 872-878.	3.2	1
158	The E-S-T Method Based on the Grand Composite Curve Links Energy Consumption with Number of Stages and Stage Temperatures for Binary Mixture Distillation. Process Integration and Optimization for Sustainability, $0, 1$.	2.6	1
159	Development of a software for simulation analysis of the phenomenon of phase change of three-phase catalytic slurry reactor. Computer Aided Chemical Engineering, 2004, 18, 703-708.	0.5	0
160	Dynamic Modelling of a Three-Phase Catalytic Slurry Reactor Considering the Phase Change Phenomenon. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2004, 37, 715-720.	0.4	0
161	Control Strategies Evaluation for a Three-Phase Hydrogenation Catalytic Reactor. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 427-432.	0.4	0
162	Adaptive Advanced Control of a Copolymerization System. Computer Aided Chemical Engineering, 2011, 29, 693-697.	0.5	0

ARTICLE IF CITATIONS

163 Biomass Processing Routes for Production of Raw Materials with High Added Value., 2015,, 241-273. 0