Todd M Pitts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11387659/publications.pdf

Version: 2024-02-01

257357 197736 2,561 54 24 49 h-index citations g-index papers 54 54 54 5724 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Patient-derived tumour xenografts as models for oncology drug development. Nature Reviews Clinical Oncology, 2012, 9, 338-350.	12.5	1,091
2	Targeting nuclear kinases in cancer: Development of cell cycle kinase inhibitors., 2014, 142, 258-269.		75
3	Identification of Predictive Markers of Response to the MEK1/2 Inhibitor Selumetinib (AZD6244) in K- <i>ras</i> i>–Mutated Colorectal Cancer. Molecular Cancer Therapeutics, 2010, 9, 3351-3362.	1.9	71
4	Development of an Integrated Genomic Classifier for a Novel Agent in Colorectal Cancer: Approach to Individualized Therapy in Early Development. Clinical Cancer Research, 2010, 16, 3193-3204.	3.2	70
5	Vorinostat and bortezomib exert synergistic antiproliferative and proapoptotic effects in colon cancer cell models. Molecular Cancer Therapeutics, 2009, 8, 342-349.	1.9	62
6	Rational Combination of a MEK Inhibitor, Selumetinib, and the Wnt/Calcium Pathway Modulator, Cyclosporin A, in Preclinical Models of Colorectal Cancer. Clinical Cancer Research, 2013, 19, 4149-4162.	3.2	61
7	Phase I Safety, Pharmacokinetic, and Pharmacodynamic Study of ENMD-2076, a Novel Angiogenic and Aurora Kinase Inhibitor, in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2011, 17, 849-860.	3.2	58
8	Overcoming IGF1R/IR Resistance through Inhibition of MEK Signaling in Colorectal Cancer Models. Clinical Cancer Research, 2013, 19, 6219-6229.	3.2	53
9	Development of new preclinical models to advance adrenocortical carcinoma research. Endocrine-Related Cancer, 2018, 25, 437-451.	1.6	45
10	A phase II clinical trial of the Aurora and angiogenic kinase inhibitor ENMD-2076 for previously treated, advanced, or metastatic triple-negative breast cancer. Breast Cancer Research, 2018, 20, 82.	2.2	44
11	Antitumor Activity of the MEK Inhibitor TAK-733 against Melanoma Cell Lines and Patient-Derived Tumor Explants. Molecular Cancer Therapeutics, 2015, 14, 317-325.	1.9	43
12	Assessment of the <i>In vivo</i> Antitumor Effects of ENMD-2076, a Novel Multitargeted Kinase Inhibitor, against Primary and Cell Line–Derived Human Colorectal Cancer Xenograft Models. Clinical Cancer Research, 2010, 16, 2989-2998.	3.2	42
13	Preclinical Activity of the Rational Combination of Selumetinib (AZD6244) in Combination with Vorinostat in KRAS-Mutant Colorectal Cancer Models. Clinical Cancer Research, 2012, 18, 1051-1062.	3.2	41
14	Common PIK3CA Mutants and a Novel 3′ UTR Mutation Are Associated with Increased Sensitivity to Saracatinib. Clinical Cancer Research, 2012, 18, 2704-2714.	3.2	41
15	Targeting vascular endothelial growth factor receptor-1 and -3 with cediranib (AZD2171): effects on migration and invasion of gastrointestinal cancer cell lines. Molecular Cancer Therapeutics, 2009, 8, 2546-2558.	1.9	40
16	Predictive Biomarkers of Sensitivity to the Aurora and Angiogenic Kinase Inhibitor ENMD-2076 in Preclinical Breast Cancer Models. Clinical Cancer Research, 2013, 19, 291-303.	3.2	40
17	Dual Pharmacological Targeting of the MAP Kinase and PI3K/mTOR Pathway in Preclinical Models of Colorectal Cancer. PLoS ONE, 2014, 9, e113037.	1.1	40
18	The Insulin-like Growth Factor I Receptor/Insulin Receptor Tyrosine Kinase Inhibitor PQIP Exhibits Enhanced Antitumor Effects in Combination with Chemotherapy Against Colorectal Cancer Models. Clinical Cancer Research, 2010, 16, 5436-5446.	3.2	38

#	Article	IF	Citations
19	ALK Inhibitor Response in Melanomas Expressing <i>EML4-ALK</i> Fusions and Alternate <i>ALK</i> Isoforms. Molecular Cancer Therapeutics, 2018, 17, 222-231.	1.9	38
20	The novel tankyrase inhibitor (AZ1366) enhances irinotecan activity in tumors that exhibit elevated tankyrase and irinotecan resistance. Oncotarget, 2016, 7, 28273-28285.	0.8	34
21	Cabozantinib Exhibits Potent Antitumor Activity in Colorectal Cancer Patient-Derived Tumor Xenograft Models via Autophagy and Signaling Mechanisms. Molecular Cancer Therapeutics, 2018, 17, 2112-2122.	1.9	33
22	Association of the epithelial-to-mesenchymal transition phenotype with responsiveness to the p21-activated kinase inhibitor, PF-3758309, in colon cancer models. Frontiers in Pharmacology, 2013, 4, 35.	1.6	32
23	p53 Family Members Regulate Phenotypic Response to Aurora Kinase A Inhibition in Triple-Negative Breast Cancer. Molecular Cancer Therapeutics, 2015, 14, 1117-1129.	1.9	32
24	Tumor P-Glycoprotein Correlates with Efficacy of PF-3758309 in in vitro and in vivo Models of Colorectal Cancer. Frontiers in Pharmacology, 2013, 4, 22.	1.6	30
25	Antitumor activity of the aurora a selective kinase inhibitor, alisertib, against preclinical models of colorectal cancer. Oncotarget, 2016, 7, 50290-50301.	0.8	27
26	Biliverdin Reductase B Dynamics Are Coupled to Coenzyme Binding. Journal of Molecular Biology, 2018, 430, 3234-3250.	2.0	22
27	Combined inhibition of MEK and Aurora A kinase in KRAS/PIK3CA double-mutant colorectal cancer models. Frontiers in Pharmacology, 2015, 6, 120.	1.6	21
28	First-in-Class Phosphorylated-p68 Inhibitor RX-5902 Inhibits \hat{I}^2 -Catenin Signaling and Demonstrates Antitumor Activity in Triple-Negative Breast Cancer. Molecular Cancer Therapeutics, 2019, 18, 1916-1925.	1.9	21
29	Phase Ib Results of the Rational Combination of Selumetinib and Cyclosporin A in Advanced Solid Tumors with an Expansion Cohort in Metastatic Colorectal Cancer. Cancer Research, 2018, 78, 5398-5407.	0.4	20
30	Efficacy and Molecular Mechanisms of Differentiated Response to the Aurora and Angiogenic Kinase Inhibitor ENMD-2076 in Preclinical Models of p53-Mutated Triple-Negative Breast Cancer. Frontiers in Oncology, 2017, 7, 94.	1.3	19
31	First-in-Class Inhibitors of Oncogenic CHD1L with Preclinical Activity against Colorectal Cancer. Molecular Cancer Therapeutics, 2020, 19, 1598-1612.	1.9	19
32	Testing Cancer Immunotherapy in a Human Immune System Mouse Model: Correlating Treatment Responses to Human Chimerism, Therapeutic Variables and Immune Cell Phenotypes. Frontiers in Immunology, 2021, 12, 607282.	2.2	19
33	Pancreatic Tumor Microenvironment Modulation by EphB4-ephrinB2 Inhibition and Radiation Combination. Clinical Cancer Research, 2019, 25, 3352-3365.	3.2	18
34	The novel ATM inhibitor (AZ31) enhances antitumor activity in patient derived xenografts that are resistant to irinotecan monotherapy. Oncotarget, 2017, 8, 110904-110913.	0.8	18
35	RX-5902, a novel \hat{l}^2 -catenin modulator, potentiates the efficacy of immune checkpoint inhibitors in preclinical models of triple-negative breast Cancer. BMC Cancer, 2020, 20, 1063.	1.1	16
36	Development and Maintenance of a Preclinical Patient Derived Tumor Xenograft Model for the Investigation of Novel Anti-Cancer Therapies. Journal of Visualized Experiments, 2016, , .	0.2	15

#	Article	IF	Citations
37	Phase I trial of vandetanib in combination with gemcitabine and capecitabine in patients with advanced solid tumors with an expanded cohort in pancreatic and biliary cancers. Investigational New Drugs, 2016, 34, 176-183.	1.2	15
38	Targeting the protein ubiquitination machinery in melanoma by the NEDD8-activating enzyme inhibitor pevonedistat (MLN4924). Investigational New Drugs, 2017, 35, 11-25.	1.2	15
39	Wee1 Inhibition Enhances the Anti-Tumor Effects of Capecitabine in Preclinical Models of Triple-Negative Breast Cancer. Cancers, 2020, 12, 719.	1.7	15
40	Targeting PDZ-binding kinase is anti-tumorigenic in novel preclinical models of ACC. Endocrine-Related Cancer, 2019, 26, 765-778.	1.6	15
41	Antitumor activity of the polo-like kinase inhibitor, TAK-960, against preclinical models of colorectal cancer. BMC Cancer, 2018, 18, 136.	1.1	13
42	WEE1 Inhibition in Combination With Targeted Agents and Standard Chemotherapy in Preclinical Models of Pancreatic Ductal Adenocarcinoma. Frontiers in Oncology, 2021, 11, 642328.	1.3	13
43	An integrated bioinformatics analysis to dissect kinase dependency in triple negative breast cancer. BMC Genomics, 2015, 16, S2.	1.2	12
44	Antitumor activity of a potent MEK inhibitor, TAK-733, against colorectal cancer cell lines and patient derived xenografts. Oncotarget, 2015, 6, 34561-34572.	0.8	10
45	Dual compartmental targeting of cell cycle and angiogenic kinases in colorectal cancer models. Anti-Cancer Drugs, 2018, 29, 827-838.	0.7	9
46	Structure, dynamics and function of the evolutionarily changing biliverdin reductase B family. Journal of Biochemistry, 2020, 168, 191-202.	0.9	9
47	Procedure for Horizontal Transfer of Patient-Derived Xenograft Tumors to Eliminate. Journal of the American Association for Laboratory Animal Science, 2017, 56, 166-172.	0.6	9
48	Preclinical Development of the Class-l–Selective Histone Deacetylase Inhibitor OKI-179 for the Treatment of Solid Tumors. Molecular Cancer Therapeutics, 2022, 21, 397-406.	1.9	8
49	A Phase I Dose-Escalation Study of Linsitinib (OSI-906), a Small-Molecule Dual Insulin-Like Growth Factor-1 Receptor/Insulin Receptor Kinase Inhibitor, in Combination with Irinotecan in Patients with Advanced Cancer. Oncologist, 2018, 23, 1409-e140.	1.9	7
50	Preclinical and Dose-Finding Phase I Trial Results of Combined Treatment with a TORC1/2 Inhibitor (TAK-228) and Aurora A Kinase Inhibitor (Alisertib) in Solid Tumors. Clinical Cancer Research, 2020, 26, 4633-4642.	3.2	7
51	Bitter melon juice intake with gemcitabine intervention circumvents resistance to gemcitabine in pancreatic patientâ€derived xenograft tumors. Molecular Carcinogenesis, 2020, 59, 1227-1240.	1.3	6
52	Modulating Enzyme Function via Dynamic Allostery within Biliverdin Reductase B. Frontiers in Molecular Biosciences, 2021, 8, 691208.	1.6	5
53	Evaluation of TAK-264, an Antibody-Drug Conjugate in Pancreatic Cancer Cell Lines and Patient-Derived Xenograft Models. Clinical Cancer Drugs, 2018, 5, 42-49.	0.3	4
54	HDAC and PD-1 inhibition in humanized triple-negative breast cancer xenografts Journal of Clinical Oncology, 2017, 35, e14604-e14604.	0.8	0