Martin Seifrid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/113874/publications.pdf

Version: 2024-02-01

		471509	477307	
30	1,533	17	29	
papers	citations	h-index	g-index	
32	32	32	2493	
32	32	32	2173	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Sizes of pure and doped helium droplets from single shot x-ray imaging. Journal of Chemical Physics, 2022, 156, 041102.	3.0	3
2	Routescore: Punching the Ticket to More Efficient Materials Development. ACS Central Science, 2022, 8, 122-131.	11.3	8
3	Low Voltage‣oss Organic Solar Cells Light the Way for Efficient Semitransparent Photovoltaics. Solar Rrl, 2022, 6, .	5 . 8	3
4	You Wouldn't Download a Molecule! Now, ChemSCAD Makes It Possible. ACS Central Science, 2021, 7, 228-230.	11.3	1
5	Microcrystal Electron Diffraction for Molecular Design of Functional Non-Fullerene Acceptor Structures. Chemistry of Materials, 2021, 33, 966-977.	6.7	12
6	Insight into the structures and dynamics of organic semiconductors through solid-state NMR spectroscopy. Nature Reviews Materials, 2020, 5, 910-930.	48.7	69
7	Robust Unipolar Electron Conduction Using an Ambipolar Polymer Semiconductor with Solution-Processable Blends. Chemistry of Materials, 2020, 32, 6831-6837.	6.7	2
8	Performance enhancement of conjugated polymer-small molecule-non fullerene ternary organic solar cells by tuning recombination kinetics and molecular ordering. Solar Energy, 2020, 201, 499-507.	6.1	21
9	Design of narrow bandgap non-fullerene acceptors for photovoltaic applications and investigation of non-geminate recombination dynamics. Journal of Materials Chemistry C, 2020, 8, 15175-15182.	5.5	50
10	Ambient Processable and Stable Allâ€Polymer Organic Solar Cells. Advanced Functional Materials, 2019, 29, 1806747.	14.9	111
11	Towards understanding the doping mechanism of organic semiconductors by Lewis acids. Nature Materials, 2019, 18, 1327-1334.	27.5	144
12	Atomic-Level Insight into the Postsynthesis Band Gap Engineering of a Lewis Base Polymer Using Lewis Acid Tris(pentafluorophenyl)borane. Chemistry of Materials, 2019, 31, 6715-6725.	6.7	35
13	Side-Chain Engineering of Nonfullerene Acceptors for Near-Infrared Organic Photodetectors and Photovoltaics. ACS Energy Letters, 2019, 4, 1401-1409.	17.4	182
14	Unifying Energetic Disorder from Charge Transport and Band Bending in Organic Semiconductors. Advanced Functional Materials, 2019, 29, 1901109.	14.9	62
15	High-k Fluoropolymer Gate Dielectric in Electrically Stable Organic Field-Effect Transistors. ACS Applied Materials & Dielectrically, 11, 15821-15828.	8.0	23
16	Direct Observation of the Relationship between Molecular Topology and Bulk Morphology for a π-Conjugated Material. Journal of the American Chemical Society, 2019, 141, 5078-5082.	13.7	38
17	Impact of rotamer diversity on the self-assembly of nearly isostructural molecular semiconductors. Journal of Materials Chemistry A, 2018, 6, 383-394.	10.3	18
18	Determining the Dielectric Constants of Organic Photovoltaic Materials Using Impedance Spectroscopy. Advanced Functional Materials, 2018, 28, 1801542.	14.9	98

#	Article	IF	CITATIONS
19	Kinetic Versus Thermodynamic Orientational Preferences for a Series of Isomorphic Molecular Semiconductors. ACS Omega, 2018, 3, 10198-10204.	3.5	15
20	Bandgap Narrowing in Nonâ€Fullerene Acceptors: Single Atom Substitution Leads to High Optoelectronic Response Beyond 1000 nm. Advanced Energy Materials, 2018, 8, 1801212.	19.5	125
21	Design of Nonfullerene Acceptors with Nearâ€Infrared Light Absorption Capabilities. Advanced Energy Materials, 2018, 8, 1801209.	19.5	95
22	Electrical Performance of a Molecular Organic Semiconductor under Thermal Stress. Advanced Materials, 2017, 29, 1605511.	21.0	20
23	Topological Transformation of Ï€â€Conjugated Molecules Reduces Resistance to Crystallization. Angewandte Chemie, 2017, 129, 9446-9449.	2.0	6
24	Topological Transformation of Ï€â€Conjugated Molecules Reduces Resistance to Crystallization. Angewandte Chemie - International Edition, 2017, 56, 9318-9321.	13.8	10
25	Antibacterial Narrowâ€Bandâ€Gap Conjugated Oligoelectrolytes with High Photothermal Conversion Efficiency. Angewandte Chemie - International Edition, 2017, 56, 16063-16066.	13.8	92
26	Antibacterial Narrowâ€Bandâ€Gap Conjugated Oligoelectrolytes with High Photothermal Conversion Efficiency. Angewandte Chemie, 2017, 129, 16279-16282.	2.0	9
27	Linear Conjugated Polymer Backbones Improve Alignment in Nanogroove-Assisted Organic Field-Effect Transistors. Journal of the American Chemical Society, 2017, 139, 17624-17631.	13.7	72
28	Synthesis and characterization of phosphorescent platinum and iridium complexes with cyclometalated corannulene. Dalton Transactions, 2015, 44, 8456-8466.	3.3	10
29	Shapes and vorticities of superfluid helium nanodroplets. Science, 2014, 345, 906-909.	12.6	197
30	Microcrystal Electron Diffraction for Molecular Design of Functional Non-Fullerene Acceptor Structures. , 0, , .		0