
Hannah Sevian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1138721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Qualifying domains of student struggle in undergraduate general chemistry laboratory. Chemistry Education Research and Practice, 2022, 23, 12-37.	2.5	6
2	Development of a framework to capture abstraction in physical chemistry problem solving. Chemistry Education Research and Practice, 2022, 23, 55-77.	2.5	1
3	Teacher dilemmas as sources of change and development. Teaching and Teacher Education, 2022, 112, 103629.	3.2	9
4	Investigating How Teachers' Formative Assessment Practices Change Across a Year. Journal of Chemical Education, 2021, 98, 2799-2808.	2.3	3
5	Exploring Variation in Ways of Thinking About and Acting to Control a Chemical Reaction. Journal of Chemical Education, 2021, 98, 3714-3722.	2.3	1
6	Analyzing Chemistry Teachers' Formative Assessment Practices Using Formative Assessment Portfolio Chapters. Journal of Chemical Education, 2020, 97, 4255-4267.	2.3	3
7	Conceptual Profile of Substance. Science and Education, 2020, 29, 1317-1360.	2.7	7
8	Teachers' Noticing, Interpreting, and Acting on Students' Chemical Ideas in Written Work. Journal of Chemical Education, 2020, 97, 3478-3489.	2.3	10
9	Connecting Theory to Life: Learning Greener Electrochemistry by Taking Apart a Common Battery. Journal of Chemical Education, 2020, 97, 934-942.	2.3	6
10	Characterizing the formative assessment enactment of experienced science teachers. Science Education, 2020, 104, 290-325.	3.0	32
11	Looking into the Black Box: Using Gaze and Pupillometric Data to Probe How Cognitive Load Changes with Mental Tasks. Journal of Chemical Education, 2019, 96, 830-840.	2.3	7
12	A Design-Based Process in Characterizing Experienced Teachers' Formative Assessment Enactment in Science Classrooms. Contributions From Science Education Research, 2019, , 325-337.	0.5	4
13	This mechanistic step is " <i>productive</i> ― organic chemistry students' backward-oriented reasoning. Chemistry Education Research and Practice, 2018, 19, 42-59.	2.5	49
14	Teaching About Energy. Science and Education, 2018, 27, 863-893.	2.7	7
15	Probing the Relevance of Chemical Identity Thinking in Biochemical Contexts. CBE Life Sciences Education, 2018, 17, ar58.	2.3	2
16	Learning progressions and teaching sequences – old wine in new skins?. Chemistry Education Research and Practice, 2018, 19, 989-997.	2.5	10
17	Comparison of learning in two context-based university chemistry classes. International Journal of Science Education, 2018, 40, 1239-1262.	1.9	16
18	How does STEM context-based learning work: what we know and what we still do not know. International Journal of Science Education, 2018, 40, 1095-1107.	1.9	62

HANNAH SEVIAN

#	Article	IF	CITATIONS
19	Epistemic games in substance characterization. Chemistry Education Research and Practice, 2018, 19, 1029-1054.	2.5	6
20	Capturing Chemical Identity Thinking. Journal of Chemical Education, 2017, 94, 137-148.	2.3	7
21	Capturing students' abstraction while solving organic reaction mechanism problems across a semester. Chemistry Education Research and Practice, 2017, 18, 169-190.	2.5	26
22	Better Formative Assessment. The Science Teacher, 2017, 084, .	0.1	9
23	Uncovering Implicit Assumptions: a Large-Scale Study on Students' Mental Models of Diffusion. Research in Science Education, 2015, 45, 807-840.	2.3	18
24	Use of representation mapping to capture abstraction in problem solving in different courses in chemistry. Chemistry Education Research and Practice, 2015, 16, 429-446.	2.5	19
25	Uncovering Chemical Thinking in Students' Decision Making: A Fuel-Choice Scenario. Journal of Chemical Education, 2015, 92, 1610-1618.	2.3	17
26	Learning Chemistry to Enrich Studentsâ \in M Views on the World they Live In. , 2015, , 55-78.		6
27	Reasoning about benefits, costs, and risks of chemical substances: mapping different levels of sophistication. Chemistry Education Research and Practice, 2015, 16, 377-392.	2.5	19
28	Atoms versus Bonds: How Students Look at Spectra. Journal of Chemical Education, 2015, 92, 1996-2005.	2.3	31
29	Chemistry in Past and New Science Frameworks and Standards: Gains, Losses, and Missed Opportunities. Journal of Chemical Education, 2014, 91, 24-29.	2.3	19
30	Rethinking chemistry: a learning progression on chemical thinking. Chemistry Education Research and Practice, 2014, 15, 10-23.	2.5	199
31	Collaborative Professional Development in Chemistry Education Research: Bridging the Gap between Research and Practice. Journal of Chemical Education, 2014, 91, 1401-1408.	2.3	30
32	What is this Substance? What Makes it Different? Mapping Progression in Students' Assumptions about Chemical Identity. International Journal of Science Education, 2014, 36, 2438-2461.	1.9	27
33	Development of Understanding in Chemistry. Contributions From Science Education Research, 2014, , 291-306.	0.5	3
34	Implicit Assumptions and Progress Variables in a Learning Progression About Structure and Motion of Matter. Innovations in Science Education and Technology, 2013, , 69-94.	0.3	8
35	An Urgent Call for Academic Chemists To Engage in Precollege Science Education. Journal of Chemical Education, 2011, 88, 248-250.	2.3	10
36	Assessing Secondary and College Students' Implicit Assumptions about the Particulate Nature of Matter: Development and Validation of the Structure and Motion of Matter Survey. Journal of Chemical Education, 2011, 88, 1359-1365.	2.3	24

HANNAH SEVIAN

#	Article	IF	CITATIONS
37	Identity and biography as mediators of science and mathematics faculty's involvement in K-12 service. Cultural Studies of Science Education, 2010, 5, 743-766.	1.3	9
38	Incrementally Approaching an Inquiry Lab Curriculum: Can Changing a Single Laboratory Experiment Improve Student Performance in General Chemistry?. Journal of Chemical Education, 2009, 86, 498.	2.3	37
39	Analysing how Scientists Explain their Research: A rubric for measuring the effectiveness of scientific explanations. International Journal of Science Education, 2008, 30, 1441-1467.	1.9	42
40	Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory. Journal of Chemical Education, 2008, 85, 251.	2.3	11
41	Teaching Lab Report Writing through Inquiry: A Green Chemistry Stoichiometry Experiment for General Chemistry. Journal of Chemical Education, 2006, 83, 1039.	2.3	25
42	Using Organic Light-Emitting Electrochemical Thin-Film Devices To Teach Materials Science. Journal of Chemical Education, 2004, 81, 1620.	2.3	13