
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11387166/publications.pdf Version: 2024-02-01

Νέρ Η Κλιιν

#	Article	IF	CITATIONS
1	Emotion, plasticity, context, and regulation: Perspectives from affective neuroscience Psychological Bulletin, 2000, 126, 890-909.	6.1	1,142
2	Amygdala and Ventromedial Prefrontal Cortex Are Inversely Coupled during Regulation of Negative Affect and Predict the Diurnal Pattern of Cortisol Secretion among Older Adults. Journal of Neuroscience, 2006, 26, 4415-4425.	3.6	938
3	Failure to Regulate: Counterproductive Recruitment of Top-Down Prefrontal-Subcortical Circuitry in Major Depression. Journal of Neuroscience, 2007, 27, 8877-8884.	3.6	878
4	Maternal stress beginning in infancy may sensitize children to later stress exposure: effects on cortisol and behavior. Biological Psychiatry, 2002, 52, 776-784.	1.3	556
5	The Neural Substrates of Affective Processing in Depressed Patients Treated With Venlafaxine. American Journal of Psychiatry, 2003, 160, 64-75.	7.2	486
6	The Role of the Central Nucleus of the Amygdala in Mediating Fear and Anxiety in the Primate. Journal of Neuroscience, 2004, 24, 5506-5515.	3.6	383
7	Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22445-22450.	7.1	383
8	Developmental pathways to amygdala-prefrontal function and internalizing symptoms in adolescence. Nature Neuroscience, 2012, 15, 1736-1741.	14.8	343
9	Anticipatory Activation in the Amygdala and Anterior Cingulate in Generalized Anxiety Disorder and Prediction of Treatment Response. American Journal of Psychiatry, 2009, 166, 302-310.	7.2	317
10	Psychedelics and Psychedelic-Assisted Psychotherapy. American Journal of Psychiatry, 2020, 177, 391-410.	7.2	309
11	Asymmetric frontal brain activity, cortisol, and behavior associated with fearful temperament in rhesus monkeys Behavioral Neuroscience, 1998, 112, 286-292.	1.2	285
12	Cortisol variation in humans affects memory for emotionally laden and neutral information Behavioral Neuroscience, 2003, 117, 505-516.	1.2	261
13	Right frontal brain activity, cortisol, and withdrawal behavior in 6-month-old infants Behavioral Neuroscience, 2003, 117, 11-20.	1.2	229
14	The Critical Relationship Between Anxiety and Depression. American Journal of Psychiatry, 2020, 177, 365-367.	7.2	224
15	A comparison of mindfulness-based stress reduction and an active control in modulation of neurogenic inflammation. Brain, Behavior, and Immunity, 2013, 27, 174-184.	4.1	222
16	Prenatal stress alters brain catecholaminergic activity and potentiates stress-induced behavior in adult rats. Brain Research, 1992, 574, 131-137.	2.2	219
17	The Primate Amygdala Mediates Acute Fear But Not the Behavioral and Physiological Components of Anxious Temperament. Journal of Neuroscience, 2001, 21, 2067-2074.	3.6	213
18	Extending the amygdala in theories of threat processing. Trends in Neurosciences, 2015, 38, 319-329.	8.6	212

#	Article	IF	CITATIONS
19	Restraint stress increases corticotropin-releasing hormone mRNA content in the amygdala and paraventricular nucleus. Brain Research, 1994, 656, 182-186.	2.2	205
20	Attenuation of stress-induced behavior by antagonism of corticotropin-releasing factor receptors in the central amygdala in the rat. Brain Research, 1993, 623, 229-234.	2.2	198
21	A Functional Magnetic Resonance Imaging Predictor of Treatment Response to Venlafaxine in Generalized Anxiety Disorder. Biological Psychiatry, 2008, 63, 858-863.	1.3	191
22	Amygdalar and hippocampal substrates of anxious temperament differ in their heritability. Nature, 2010, 466, 864-868.	27.8	190
23	Effects of Interferon-Alpha on Rhesus Monkeys: A Nonhuman Primate Model of Cytokine-Induced Depression. Biological Psychiatry, 2007, 62, 1324-1333.	1.3	189
24	Corticotropin-releasing factor modulates defensive-withdrawal and exploratory behavior in rats Behavioral Neuroscience, 1989, 103, 648-654.	1.2	186
25	Longitudinal stability and developmental properties of salivary cortisol levels and circadian rhythms from childhood to adolescence. Developmental Psychobiology, 2012, 54, 493-502.	1.6	179
26	Opiate modulation of separation-induced distress in non-human primates. Brain Research, 1988, 440, 285-292.	2.2	178
27	Influence of early life stress on later hypothalamic–pituitary–adrenal axis functioning and its covariation with mental health symptoms: A study of the allostatic process from childhood into adolescence. Development and Psychopathology, 2011, 23, 1039-1058.	2.3	177
28	Early Risk Factors and Developmental Pathways to Chronic High Inhibition and Social Anxiety Disorder in Adolescence. American Journal of Psychiatry, 2010, 167, 40-46.	7.2	173
29	Reduction of Stress-Induced Behavior by Antagonism of Corticotropin-Releasing Hormone 2 (CRH ₂) Receptors in Lateral Septum or CRH ₁ Receptors in Amygdala. Journal of Neuroscience, 2002, 22, 2926-2935.	3.6	163
30	Context-Specific Freezing and Associated Physiological Reactivity as a Dysregulated Fear Response Developmental Psychology, 2004, 40, 583-594.	1.6	163
31	PROLONGED STRESS-INDUCED ELEVATION IN PLASMA CORTICOSTERONE DURING PREGNANCY IN THE RAT: IMPLICATIONS FOR PRENATAL STRESS STUDIES. Psychoneuroendocrinology, 1998, 23, 571-581.	2.7	161
32	Early developmental and temporal characteristics of stress-induced secretion of pituitary-adrenal hormones in prenatally stressed rat pups. Brain Research, 1991, 558, 75-78.	2.2	158
33	Rapid stress-induced elevations in corticotropin-releasing hormone mRNA in rat central amygdala nucleus and hypothalamic paraventricular nucleus: An in situ hybridization analysis. Brain Research, 1998, 788, 305-310.	2.2	157
34	Nonhuman Primate Models to Study Anxiety, Emotion Regulation, and Psychopathology. Annals of the New York Academy of Sciences, 2003, 1008, 189-200.	3.8	157
35	Brain Regions Associated with the Expression and Contextual Regulation of Anxiety in Primates. Biological Psychiatry, 2005, 58, 796-804.	1.3	156
36	A Translational Neuroscience Approach to Understanding the Development of Social Anxiety Disorder and Its Pathophysiology. American Journal of Psychiatry, 2014, 171, 1162-1173.	7.2	156

#	Article	IF	CITATIONS
37	Stability of amygdala BOLD response to fearful faces over multiple scan sessions. NeuroImage, 2005, 25, 1112-1123.	4.2	146
38	Imaging Genetics and Genomics in Psychiatry: A Critical Review of Progress and Potential. Biological Psychiatry, 2017, 82, 165-175.	1.3	144
39	Relationships Between Changes in Sustained Fronto-Striatal Connectivity and Positive Affect in Major Depression Resulting From Antidepressant Treatment. American Journal of Psychiatry, 2013, 170, 197-206.	7.2	140
40	Mood state and salivary cortisol levels following overtraining in female swimmers. Psychoneuroendocrinology, 1989, 14, 303-310.	2.7	137
41	Opiate systems in mother and infant primates coordinate intimate contact during reunion. Psychoneuroendocrinology, 1995, 20, 735-742.	2.7	135
42	Affective style and in vivo immune response: Neurobehavioral mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11148-11152.	7.1	132
43	Trait-Like Brain Activity during Adolescence Predicts Anxious Temperament in Primates. PLoS ONE, 2008, 3, e2570.	2.5	130
44	Cerebrospinal fluid corticotropin-releasing hormone levels are elevated in monkeys with patterns of brain activity associated with fearful temperament. Biological Psychiatry, 2000, 47, 579-585.	1.3	129
45	4-(1,3-Dimethoxyprop-2-ylamino)-2,7-dimethyl-8-(2,4-dichlorophenyl)pyrazolo[1,5- <i>a</i>]-1,3,5-triazine:  A Potent, Orally Bioavailable CRF ₁ Receptor Antagonist. Journal of Medicinal Chemistry, 2000, 43, 449-456.	6.4	127
46	Individual differences in freezing and cortisol in infant and mother rhesus monkeys Behavioral Neuroscience, 1998, 112, 251-254.	1.2	126
47	The dexamethasone suppression test in patients with primary obsessive-compulsive disorder. Psychiatry Research, 1982, 6, 153-160.	3.3	125
48	Role of the Primate Orbitofrontal Cortex in Mediating Anxious Temperament. Biological Psychiatry, 2007, 62, 1134-1139.	1.3	124
49	Electroencephalographic Biomarkers for Treatment Response Prediction in Major Depressive Illness: A Meta-Analysis. American Journal of Psychiatry, 2019, 176, 44-56.	7.2	122
50	Corticotropin-releasing hormone and animal models of anxiety: gene–environment interactions. Biological Psychiatry, 2000, 48, 1175-1198.	1.3	121
51	Neural mechanisms underlying heterogeneity in the presentation of anxious temperament. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6145-6150.	7.1	121
52	Antagonism of endogenous CRH systems attenuates stress-induced freezing behavior in rats. Brain Research, 1988, 457, 130-135.	2.2	119
53	Clinical Implementation of Pharmacogenetic Decision Support Tools for Antidepressant Drug Prescribing. American Journal of Psychiatry, 2018, 175, 873-886.	7.2	119
54	Hormonal Treatments for Major Depressive Disorder: State of the Art. American Journal of Psychiatry, 2020, 177, 686-705.	7.2	119

#	Article	IF	CITATIONS
55	Orbitofrontal Cortex Lesions Alter Anxiety-Related Activity in the Primate Bed Nucleus of Stria Terminalis. Journal of Neuroscience, 2010, 30, 7023-7027.	3.6	113
56	The Neurobiology of Fear. Scientific American, 1993, 268, 94-101.	1.0	110
57	Sequence diversity analyses of an improved rhesus macaque genome enhance its biomedical utility. Science, 2020, 370, .	12.6	105
58	Plasma ACTH and cortisol concentrations before and after dexamethasone. Psychiatry Research, 1982, 7, 87-92.	3.3	103
59	Corticotropin-releasing factor administered intraventricularly to rhesus monkeys. Peptides, 1983, 4, 217-220.	2.4	102
60	Defensive Behaviors in Infant Rhesus Monkeys: Ontogeny and Context-Dependent Selective Expression. Child Development, 1991, 62, 1175.	3.0	101
61	Predator threat induces behavioral inhibition, pituitary-adrenal activation and changes in amygdala CRF-binding protein gene expression. Psychoneuroendocrinology, 2007, 32, 44-55.	2.7	97
62	Functional Connectivity within the Primate Extended Amygdala Is Heritable and Associated with Early-Life Anxious Temperament. Journal of Neuroscience, 2018, 38, 7611-7621.	3.6	97
63	Ontogeny of behavioral and hormonal responses to stress in prenatally stressed male rat pups. Physiology and Behavior, 1990, 47, 357-364.	2.1	96
64	Serotonin Transporter Availability in the Amygdala and Bed Nucleus of the Stria Terminalis Predicts Anxious Temperament and Brain Glucose Metabolic Activity. Journal of Neuroscience, 2009, 29, 9961-9966.	3.6	96
65	Environmental influences on family similarity in afternoon cortisol levels: Twin and parent–offspring designs. Psychoneuroendocrinology, 2006, 31, 1131-1137.	2.7	94
66	Right frontal brain activity, cortisol, and withdrawal behavior in 6-month-old infants Behavioral Neuroscience, 2003, 117, 11-20.	1.2	94
67	Association of Prenatal Maternal Depression and Anxiety Symptoms With Infant White Matter Microstructure. JAMA Pediatrics, 2018, 172, 973.	6.2	93
68	Defensive Behaviors in Infant Rhesus Monkeys: Ontogeny and Context-dependent Selective Expression. Child Development, 1991, 62, 1175-1183.	3.0	92
69	Intergenerational neural mediators of early-life anxious temperament. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9118-9122.	7.1	90
70	Naloxone effects on ?-endorphin, cortisol, prolactin, growth hormone, HVA and MHPG in plasma of normal volunteers. Psychopharmacology, 1981, 74, 125-128.	3.1	87
71	Reduced Right Ventrolateral Prefrontal Cortex Activity While Inhibiting Positive Affect Is Associated with Improvement in Hedonic Capacity After 8 Weeks of Antidepressant Treatment in Major Depressive Disorder. Biological Psychiatry, 2011, 70, 962-968.	1.3	82
72	Stressor controllability during pregnancy influences pituitary-adrenal hormone concentrations and analgesic responsiveness in offspring. Physiology and Behavior, 1988, 42, 323-329.	2.1	79

#	Article	IF	CITATIONS
73	Amygdalar interhemispheric functional connectivity differs between the non-depressed and depressed human brain. NeuroImage, 2004, 21, 674-686.	4.2	79
74	ICV-CRH alters stress-induced freezing behavior without affecting pain sensitivity. Pharmacology Biochemistry and Behavior, 1988, 30, 801-807.	2.9	78
75	Stimulation of Lateral Septum CRF ₂ Receptors Promotes Anorexia and Stress-Like Behaviors: Functional Homology to CRF ₁ Receptors in Basolateral Amygdala. Journal of Neuroscience, 2007, 27, 10568-10577.	3.6	74
76	Increased Prefrontal Cortex Activity During Negative Emotion Regulation as a Predictor of Depression Symptom Severity Trajectory Over 6 Months. JAMA Psychiatry, 2013, 70, 1181.	11.0	74
77	Connectivity between the central nucleus of the amygdala and the bed nucleus of the stria terminalis in the non-human primate: neuronal tract tracing and developmental neuroimaging studies. Brain Structure and Function, 2017, 222, 21-39.	2.3	70
78	Lateralized response to diazepam predicts temperamental style in rhesus monkeys Behavioral Neuroscience, 1993, 107, 1106-1110.	1.2	69
79	Antagonism of corticotropin-releasing factor receptors in the locus coeruleus attenuates shock-induced freezing in rats. Brain Research, 1992, 587, 263-268.	2.2	67
80	The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology, 2022, 47, 260-275.	5.4	67
81	A diurnal rhythm in cerebrospinal fluid corticotrophin-releasing hormone different from the rhythm of pituitary-adrenal activity. Brain Research, 1987, 426, 385-391.	2.2	66
82	A diffusion tensor brain template for Rhesus Macaques. NeuroImage, 2012, 59, 306-318.	4.2	66
83	Fear of the Unknown: Uncertain Anticipation Reveals Amygdala Alterations in Childhood Anxiety Disorders. Neuropsychopharmacology, 2015, 40, 1428-1435.	5.4	65
84	Evidence for coordinated functional activity within the extended amygdala of non-human and human primates. Neurolmage, 2012, 61, 1059-1066.	4.2	62
85	Overexpressing Corticotropin-Releasing Factor in the Primate Amygdala Increases Anxious Temperament and Alters Its Neural Circuit. Biological Psychiatry, 2016, 80, 345-355.	1.3	61
86	Episodic secretion of opioid activity in human plasma and monkey CSF: Evidence for a diurnal rhythm. Life Sciences, 1981, 28, 931-935.	4.3	60
87	Pulsatile ACTH secretion: Variation with time of day and relationship to cortisol. Peptides, 1988, 9, 325-331.	2.4	59
88	Lateralized effects of diazepam on frontal brain electrical asymmetries in rhesus monkeys. Biological Psychiatry, 1992, 32, 438-451.	1.3	58
89	Subgenual Prefrontal Cortex Activity Predicts Individual Differences in Hypothalamic-Pituitary-Adrenal Activity Across Different Contexts. Biological Psychiatry, 2010, 67, 175-181.	1.3	57
90	Microinfusion of corticotropin-releasing factor into the nucleus accumbens shell results in increased behavioral arousal and oral motor activity. Psychopharmacology, 1997, 130, 189-196.	3.1	56

#	Article	IF	CITATIONS
91	Central amygdala nucleus (Ce) gene expression linked to increased trait-like Ce metabolism and anxious temperament in young primates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18108-18113.	7.1	56
92	Bayesian convolutional neural network based MRI brain extraction on nonhuman primates. NeuroImage, 2018, 175, 32-44.	4.2	56
93	Fear-motivated behavior induced by prior shock experience is mediated by corticotropin-releasing hormone systems. Brain Research, 1990, 509, 80-84.	2.2	55
94	Neuropeptide Y Receptor Gene Expression in the Primate Amygdala Predicts Anxious Temperament and Brain Metabolism. Biological Psychiatry, 2014, 76, 850-857.	1.3	55
95	Treatment Outcome-Related White Matter Differences in Veterans with Posttraumatic Stress Disorder. Neuropsychopharmacology, 2015, 40, 2434-2442.	5.4	54
96	Separation induced changes in squirrel monkey hypothalamic-pituitary-adrenal physiology resemble aspects of hypercortisolism in humans. Psychoneuroendocrinology, 1999, 24, 131-142.	2.7	53
97	The effects of acute stress on the regulation of central and basolateral amygdala CRF-binding protein gene expression. Molecular Brain Research, 2004, 131, 17-25.	2.3	52
98	Associated endocrine, physiological and behavioral changes in rhesus monkeys after intravenous corticotropin-releasing factor administration. Peptides, 1983, 4, 211-215.	2.4	51
99	Cortico-Limbic Interactions Mediate Adaptive and Maladaptive Responses Relevant to Psychopathology. American Journal of Psychiatry, 2019, 176, 987-999.	7.2	51
100	Ontogeny and stability of separation and threat-induced defensive behaviors in rhesus monkeys during the first year of life. American Journal of Primatology, 1998, 44, 125-135.	1.7	50
101	Acute cortisol elevations cause heightened arousal ratings of objectively nonarousing stimuli Emotion, 2005, 5, 354-359.	1.8	50
102	Effects of amygdala lesions on sleep in rhesus monkeys. Brain Research, 2000, 879, 130-138.	2.2	47
103	Individual differences in the responses of na \tilde{A} ve rhesus monkeys to snakes Emotion, 2003, 3, 3-11.	1.8	47
104	Calling for help is independently modulated by brain systems underlying goal-directed behavior and threat perception. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4176-4179.	7.1	46
105	Ventromedial prefrontal cortex damage alters resting blood flow to the bed nucleus of stria terminalis. Cortex, 2015, 64, 281-288.	2.4	46
106	Corticotropin-releasing factor-1 receptors in the basolateral amygdala mediate stress-induced anorexia Behavioral Neuroscience, 2005, 119, 1448-1458.	1.2	45
107	The Dexamethasone Suppression Test as a Measure of Hypothalamic-Pituitary Feedback Sensitivity and its Relationship to Behavioral Arousal. Neuroendocrinology, 1981, 32, 92-95.	2.5	44
108	Behavioral stress decreases plasma oxytocin concentrations in primates. Life Sciences, 1985, 36, 1275-1280.	4.3	44

#	Article	IF	CITATIONS
109	The dexamethasone suppression test in demented outpatients with and without depression. Psychiatry Research, 1983, 9, 337-344.	3.3	43
110	Biological correlates of attachment bond disruption in humans and nonhuman primates. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1984, 8, 459-469.	4.8	42
111	Mechanisms underlying the early risk to develop anxiety and depression: A translational approach. European Neuropsychopharmacology, 2017, 27, 543-553.	0.7	42
112	U-net model for brain extraction: Trained on humans for transfer to non-human primates. NeuroImage, 2021, 235, 118001.	4.2	42
113	ICV-CRH potently affects behavior without altering antinociceptive responding. Life Sciences, 1986, 39, 433-441.	4.3	41
114	Episodic secretion of ACTH in rats. Peptides, 1986, 7, 219-223.	2.4	41
115	Decreased Amygdala CRF-Binding Protein mRNA in Post-Mortem Tissue from Male but not Female Bipolar and Schizophrenic Subjects. Neuropsychopharmacology, 2006, 31, 1822-1831.	5.4	41
116	Differentially Methylated Plasticity Genes in the Amygdala of Young Primates Are Linked to Anxious Temperament, an at Risk Phenotype for Anxiety and Depressive Disorders. Journal of Neuroscience, 2014, 34, 15548-15556.	3.6	41
117	Social media recruitment for mental health research: A systematic review. Comprehensive Psychiatry, 2020, 103, 152197.	3.1	41
118	Use of the Dexamethasone Suppression Test in Clinical Psychiatry. Journal of Clinical Psychopharmacology, 1981, 1, 64-69.	1.4	39
119	Separation distress in infant rhesus monkeys: effects of diazepam and Ro 15-1788. Brain Research, 1987, 408, 192-198.	2.2	39
120	Altered Uncinate Fasciculus Microstructure in Childhood Anxiety Disorders in Boys But Not Girls. American Journal of Psychiatry, 2019, 176, 208-216.	7.2	39
121	Studying non-human primates: a gateway to understanding anxiety disorders. Psychopharmacology Bulletin, 2004, 38, 8-13.	0.0	38
122	Affiliative vocalizations in infant rhesus macaques (Macaca mulatta) Journal of Comparative Psychology (Washington, D C: 1983), 1992, 106, 254-261.	0.5	37
123	Ultrastructural localization of <scp>DREADD</scp> s in monkeys. European Journal of Neuroscience, 2019, 50, 2801-2813.	2.6	37
124	Neuropharmacology of venlafaxine. Depression and Anxiety, 2000, 12, 20-29.	4.1	36
125	Anxiety, Depression, and Suicide in Youth. American Journal of Psychiatry, 2021, 178, 275-279.	7.2	35
126	Effects of acute and repeated restraint stress on corticotropin-releasing hormone binding protein mRNA in rat amygdala and dorsal hippocampus. Neuroscience Letters, 2001, 302, 81-84.	2.1	34

#	Article	IF	CITATIONS
127	ACTH in plasma and CSF in the rhesus monkey. Biological Psychiatry, 1986, 21, 124-140.	1.3	33
128	Corticotropin-releasing factor antagonist attenuates defensive-withdrawal behavior elicited by odors of stressed conspecifics Behavioral Neuroscience, 1990, 104, 386-389.	1.2	31
129	Development of stress-induced responses in preweanling rats. Developmental Psychobiology, 1991, 24, 341-360.	1.6	30
130	The distribution of D2/D3 receptor binding in the adolescent rhesus monkey using small animal PET imaging. NeuroImage, 2009, 44, 1334-1344.	4.2	30
131	Characterization of single-nucleotide variation in Indian-origin rhesus macaques (Macaca mulatta). BMC Genomics, 2011, 12, 311.	2.8	30
132	Children's context inappropriate anger and salivary cortisol Developmental Psychology, 2009, 45, 1284-1297.	1.6	28
133	Effects of synthetic ovine CRF on ACTH, cortisol and blood pressure in sheep. Peptides, 1983, 4, 221-223.	2.4	27
134	Management of the depressive component of bipolar disorder. Depression and Anxiety, 1996, 4, 190-198.	4.1	27
135	Persistent corticotropin-releasing factor1 receptor desensitization and downregulation in the human neuroblastoma cell line IMR-32. Molecular Brain Research, 2001, 92, 115-127.	2.3	27
136	Dorsal Amygdala Neurotrophin-3 Decreases Anxious Temperament in Primates. Biological Psychiatry, 2019, 86, 881-889.	1.3	27
137	Effects of Chronic Medical Illness and Dementia on the Dexamethasone Suppression Test. Journal of the American Geriatrics Society, 1983, 31, 269-271.	2.6	25
138	Evidence in primates supporting the use of chemogenetics for the treatment of human refractory neuropsychiatric disorders. Molecular Therapy, 2021, 29, 3484-3497.	8.2	25
139	Effects of Acute Behavioral Stress on Plasma and Cerebrospinal Fluid ACTH and β-Endorphin in Rhesus Monkeys. Neuroendocrinology, 1985, 40, 97-101.	2.5	24
140	Effects of ß-carboline on fear-related behavioral and neurohormonal responses in infant rhesus monkeys. Biological Psychiatry, 1992, 31, 1008-1019.	1.3	23
141	Nonhuman Primate Models to Explore Mechanisms Underlying Early-Life Temperamental Anxiety. Biological Psychiatry, 2021, 89, 659-671.	1.3	23
142	Corticotropin-Releasing Factor (CRF) Receptors in Infant Rhesus Monkey Brain and Pituitary Gland: Biochemical Characterization and Autoradiographic Localization. Developmental Neuroscience, 1995, 17, 357-367.	2.0	21
143	Neurobiological correlates of defensive behaviors. Progress in Brain Research, 2000, 122, 105-115.	1.4	21
144	A multi-dimensional characterization of anxiety in monozygotic twin pairs reveals susceptibility loci in humans. Translational Psychiatry, 2017, 7, 1282.	4.8	20

#	Article	IF	CITATIONS
145	Somatostatin Gene and Protein Expression in the Non-human Primate Central Extended Amygdala. Neuroscience, 2019, 400, 157-168.	2.3	20
146	Neuroendocrine dysfunction in depression: hypothalamic-anterior pituitary systems. Trends in Neurosciences, 1986, 9, 261-266.	8.6	19
147	Function of the adrenal cortex in patients with major depression. Psychiatry Research, 1987, 22, 117-125.	3.3	19
148	Transcriptional Profiling of Primate Central Nucleus of the Amygdala Neurons to Understand the Molecular Underpinnings of Early-Life Anxious Temperament. Biological Psychiatry, 2020, 88, 638-648.	1.3	18
149	Preschool Externalizing Behavior Predicts Gender-Specific Variation in Adolescent Neural Structure. PLoS ONE, 2015, 10, e0117453.	2.5	18
150	Adolescent adrenocortical activity and adiposity: Differences by sex and exposure to early maternal depression. Psychoneuroendocrinology, 2014, 47, 68-77.	2.7	17
151	The Central and Peripheral Opioid Peptides: Their Relationships and Functions. Psychiatric Clinics of North America, 1983, 6, 415-428.	1.3	17
152	Effects of alprazolam on fear-related behavioral, hormonal, and catecholamine responses in infant Rhesus monkeys. Life Sciences, 1991, 49, 2031-2044.	4.3	16
153	The Relationship Between the Uncinate Fasciculus and Anxious Temperament Is Evolutionarily Conserved and Sexually Dimorphic. Biological Psychiatry, 2019, 86, 890-898.	1.3	16
154	Novel Insights Into Pathological Anxiety and Anxiety-Related Disorders. American Journal of Psychiatry, 2020, 177, 187-189.	7.2	16
155	Neural activity and diurnal variation of cortisol: Evidence from brain electrical tomography analysis and relevance to anhedonia. Psychophysiology, 2008, 45, 886-895.	2.4	15
156	Substance Use Disorders and Addiction: Mechanisms, Trends, and Treatment Implications. American Journal of Psychiatry, 2020, 177, 1015-1018.	7.2	15
157	Insights Into Suicide and Depression. American Journal of Psychiatry, 2020, 177, 877-880.	7.2	15
158	Nonhuman primate studies of fear, anxiety, and temperament and the role of benzodiazepine receptors and GABA systems. Journal of Clinical Psychiatry, 2003, 64 Suppl 3, 41-4.	2.2	15
159	Prefrontal Cortical and Limbic Circuit Alterations in Psychopathology. American Journal of Psychiatry, 2019, 176, 971-973.	7.2	14
160	Corticotropin-Releasing Hormone Binding Protein: Stress, Psychopathology, and Antidepressant Treatment Response. American Journal of Psychiatry, 2018, 175, 204-206.	7.2	13
161	Characterization of the Human Corticotropin-Releasing Factor2(a) Receptor Promoter: Regulation by Glucocorticoids and the Cyclic Adenosine 5′-Monophosphate Pathway. Endocrinology, 2004, 145, 5605-5615.	2.8	12
162	Stress decreases, while central nucleus amygdala lesions increase, IL-8 and MIP-1α gene expression during tissue healing in non-human primates. Brain, Behavior, and Immunity, 2006, 20, 564-568.	4.1	12

#	Article	IF	CITATIONS
163	Diurnal Variation in Cerebrospinal Fluid Prolactin Concentration of the Rhesus Monkey. Journal of Clinical Endocrinology and Metabolism, 1981, 52, 857-858.	3.6	11
164	The diurnal variation of immunoreactive adrenocorticotropin in rhesus monkey plasma and cerebrospinal fluid. Life Sciences, 1985, 36, 1135-1140.	4.3	11
165	<i>The American Journal of Psychiatry</i> 's Commitment to Combat Racism, Social Injustice, and Health Care Inequities. American Journal of Psychiatry, 2020, 177, 791-791.	7.2	11
166	Trauma, Resilience, Anxiety Disorders, and PTSD. American Journal of Psychiatry, 2021, 178, 103-105.	7.2	11
167	The relationship between blood and cerebrospinal fluid prolactin in nonhuman primates. Life Sciences, 1982, 31, 159-163.	4.3	10
168	Effects of clonidine and propranolol on separation-induced distress in infant rhesus monkeys. Developmental Brain Research, 1988, 42, 289-295.	1.7	10
169	REM Sleep Deprivation Induces Changes in Coping Responses That Are Not Reversed by Amphetamine. Sleep, 2004, , .	1.1	10
170	COVID-19 and Stress-Related Disorders. American Journal of Psychiatry, 2021, 178, 471-474.	7.2	10
171	Impacts of Structural Racism, Socioeconomic Deprivation, and Stigmatization on Mental Health. American Journal of Psychiatry, 2021, 178, 575-578.	7.2	10
172	A new method for aversive pavlovian conditioning of heart rate in rhesus monkeys. Physiology and Behavior, 1996, 60, 1043-1046.	2.1	9
173	Acute stress-induced increases in thalamic CRH mRNA are blocked by repeated stress exposure. Brain Research, 2001, 915, 18-24.	2.2	9
174	The Regulation of Defensive Behaviors in Rhesus Monkeys. , 2000, , 50-68.		9
175	New Insights Into the Mechanisms of Ketamine's Antidepressant Effects: Understanding the Role of VEGF in Mediating Plasticity Processes. American Journal of Psychiatry, 2019, 176, 333-335.	7.2	8
176	Reassessing Mental Health Treatment Utilization Reduction in Transgender Individuals After Gender-Affirming Surgeries: A Comment by the Editor on the Process. American Journal of Psychiatry, 2020, 177, 764-764.	7.2	8
177	Circadian variation in the CSF cortisol concentration of the rhesus monkey. Life Sciences, 1980, 26, 1485-1487.	4.3	7
178	Corticotropin-releasing factor (CRF), but not corticosterone, increases basolateral amygdala CRF-binding protein. Brain Research, 2006, 1083, 21-28.	2.2	7
179	Early-Life Environmental Factors Impacting the Development of Psychopathology. American Journal of Psychiatry, 2020, 177, 1-3.	7.2	7
180	New Insights Into Major Depression and the Treatment of Bipolar Depression. American Journal of Psychiatry, 2021, 178, 1071-1074.	7.2	7

#	Article	IF	CITATIONS
181	A dynamic relation between whole-brain white matter microstructural integrity and anxiety symptoms in preadolescent females with pathological anxiety. Translational Psychiatry, 2022, 12, 57.	4.8	7
182	Psychedelics and Psychedelic-Assisted Psychotherapy. Focus (American Psychiatric Publishing), 2021, 19, 95-115.	0.8	6
183	Developing Innovative and Novel Treatment Strategies. American Journal of Psychiatry, 2019, 176, 885-887.	7.2	5
184	Spatiotemporal dynamics of nonhuman primate white matter development during the first year of life. NeuroImage, 2021, 231, 117825.	4.2	5
185	Role of Corticotropin-Releasing Factor in Mediating the Expression of Defensive Behavior. , 1989, , 580-594.		5
186	Social factors regulating security and fear in infant rhesus monkeys. Depression, 1993, 1, 137-142.	0.6	4
187	A Rostral-Caudal Concentration Gradient in Cerebrospinal Fluid Adrenocorticotropin. Neuroendocrinology, 1986, 43, 348-351.	2.5	3
188	Diurnal changes in corticotropin-releasing hormone messenger RNA in the rat thalamus. Neuroscience Letters, 2003, 338, 33-36.	2.1	3
189	Advances in Understanding and Treating Mood Disorders. American Journal of Psychiatry, 2020, 177, 647-650.	7.2	3
190	Transcriptional Profiling of Amygdala Neurons Implicates PKCδ in Primate Anxious Temperament. Chronic Stress, 2021, 5, 247054702198932.	3.4	3
191	The HPA System and Neuroendocrine Models of Depression. , 1989, , 57-73.		3
192	Alcohol and Cannabis Use Disorders. American Journal of Psychiatry, 2022, 179, 1-4.	7.2	3
193	Gaining Ground on Schizophrenia: Conceptualizing How to Use Neuroimaging and Genomics in Its Diagnosis and Treatment. American Journal of Psychiatry, 2019, 176, 771-773.	7.2	2
194	An Introduction and Vision. American Journal of Psychiatry, 2019, 176, 1-2.	7.2	2
195	Molecules and Circuits Implicated in Schizophrenia Provide Leads for Novel Treatments. American Journal of Psychiatry, 2020, 177, 1099-1102.	7.2	2
196	New Findings Related to Cognition, Intellectual Disability, Dementia, and Autism. American Journal of Psychiatry, 2020, 177, 473-475.	7.2	2
197	COVID-19, Substance Use, Anorexia Nervosa, 22q11.2 Deletion Syndrome, and Stress. American Journal of Psychiatry, 2020, 177, 561-563.	7.2	2
198	Understanding the Value and Limitations of MRI Neuroimaging in Psychiatry. American Journal of Psychiatry, 2021, 178, 673-676.	7.2	2

#	Article	IF	CITATIONS
199	Depression and Schizophrenia: Sleep, Medical Risk Factors, Biomarkers, and Treatment. American Journal of Psychiatry, 2021, 178, 881-884.	7.2	2
200	Corticotrophin-Releasing Hormone. , 1986, , 195-204.		2
201	Longitudinal Assessment of Early-Life White Matter Development with Quantitative Relaxometry in Nonhuman Primates. Neurolmage, 2022, , 118989.	4.2	2
202	Using Neuroimaging to Characterize Brain Alterations Associated With Psychopathology. American Journal of Psychiatry, 2019, 176, 495-497.	7.2	1
203	New Findings Relevant to Substance Use Disorders. American Journal of Psychiatry, 2019, 176, A10-A10.	7.2	1
204	Improving the Lives of Patients With Major Depression by Focusing on New Treatment Approaches. American Journal of Psychiatry, 2019, 176, 329-330.	7.2	1
205	Childhood and Adolescent Neurodevelopmental Disorders. American Journal of Psychiatry, 2020, 177, 792-794.	7.2	1
206	Psychotic Experiences, Cognitive Decline, and Genetic Vulnerabilities in Relation to Developing Psychotic Disorders. American Journal of Psychiatry, 2020, 177, 279-281.	7.2	1
207	Genes, Cells, and Neural Circuits Relevant to OCD and Autism Spectrum Disorder. American Journal of Psychiatry, 2021, 178, 1-4.	7.2	1
208	Improving Treatment Outcomes Includes Increasing the Diversity of the Psychiatric Workforce. American Journal of Psychiatry, 2021, 178, 207-209.	7.2	1
209	Scientific Advances Supporting New and Improved Treatment Strategies in Psychiatry. American Journal of Psychiatry, 2021, 178, 365-368.	7.2	1
210	Management of the depressive component of bipolar disorder. Depression and Anxiety, 1996, 4, 190-198.	4.1	1
211	Treating Substance Use Disorders, Binge Eating, and Depression, and Identifying Factors Underlying Psychosis Risk. American Journal of Psychiatry, 2020, 177, 101-103.	7.2	1
212	Spanning Treatment Modalities: Psychotherapy, Psychopharmacology, and Neuromodulation. American Journal of Psychiatry, 2022, 179, 75-78.	7.2	1
213	CLINICAL COMMENTS. Clinical Gerontologist, 1984, 3, 27-54.	2.2	0
214	Psychiatric Genetics: Scientific Advances and Clinical Challenges. American Journal of Psychiatry, 2019, 176, 595-597.	7.2	0
215	Integrating Clinical Psychiatry With Behavioral Neuroscience: Reflections and a Call for Papers. American Journal of Psychiatry, 2019, 176, 675-676.	7.2	0
216	Developing Novel Psychopharmacological Strategies and Therapeutics. American Journal of Psychiatry, 2019, 176, 419-421.	7.2	0

#	Article	IF	CITATIONS
217	New Insights Highlighting Neurodevelopmental Issues That Predispose to Childhood and Adolescent Psychopathology. American Journal of Psychiatry, 2019, 176, 171-172.	7.2	0
218	Optimizing the Efficacy of Psychotherapy, Cognitive Training, and Internet Interventions. American Journal of Psychiatry, 2019, 176, 257-258.	7.2	0
219	Insights Into Improving Clinical Outcomes Across Psychiatric Disorders and Medical Comorbidities. American Journal of Psychiatry, 2021, 178, 779-782.	7.2	0
220	Behavioral inhibition in rats: a model to examine mechanisms underlying the risk to develop anxiety and depression. FASEB Journal, 2010, 24, 768.4.	0.5	0
221	Adversity, Trauma, Suicide, and Alzheimer's Disease. American Journal of Psychiatry, 2021, 178, 985-987.	7.2	0
222	Insights Into the Genomic Underpinnings of Psychopathology. American Journal of Psychiatry, 2022, 179, 171-174.	7.2	0
223	Integrating Clinical and Basic Research: Opioid Use Disorder, Psychotic Illnesses, and Prefrontal Microcircuits Relevant to Schizophrenia. American Journal of Psychiatry, 2022, 179, 255-258.	7.2	0
224	From the Early Emergence of Psychiatry to Stem Cells and Neural Organoids. American Journal of Psychiatry, 2022, 179, 313-316.	7.2	0
225	Structural Racism and the Imperative to Eliminate Mental Health Disparities. American Journal of Psychiatry, 2022, 179, 395-395.	7.2	0
226	Neuroscientific Advances Supporting New Treatments for Major Depression. American Journal of Psychiatry, 2022, 179, 441-444.	7.2	0