Yuyan Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11386480/publications.pdf

Version: 2024-02-01

50	8,034 citations	70961 41	205818 48 g-index
papers	citations	h-index	g-index
51 all docs	51 docs citations	51 times ranked	5631 citing authors

#	Article	IF	Citations
1	Dualâ€Peak Absorbing Semiconducting Copolymer Nanoparticles for First and Second Nearâ€Infrared Window Photothermal Therapy: A Comparative Study. Advanced Materials, 2018, 30, e1705980.	11.1	489
2	Multimodal Biophotonics of Semiconducting Polymer Nanoparticles. Accounts of Chemical Research, 2018, 51, 1840-1849.	7.6	394
3	Broadband Absorbing Semiconducting Polymer Nanoparticles for Photoacoustic Imaging in Second Near-Infrared Window. Nano Letters, 2017, 17, 4964-4969.	4.5	356
4	Cell Membrane Coated Semiconducting Polymer Nanoparticles for Enhanced Multimodal Cancer Phototheranostics. ACS Nano, 2018, 12, 8520-8530.	7.3	305
5	Enhancing Both Biodegradability and Efficacy of Semiconducting Polymer Nanoparticles for Photoacoustic Imaging and Photothermal Therapy. ACS Nano, 2018, 12, 1801-1810.	7.3	299
6	Compact Plasmonic Blackbody for Cancer Theranosis in the Near-Infrared II Window. ACS Nano, 2018, 12, 2643-2651.	7.3	294
7	Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nature Communications, 2020, 11, 1857.	5.8	294
8	A Semiconducting Polymer Nanoâ€prodrug for Hypoxiaâ€Activated Photodynamic Cancer Therapy. Angewandte Chemie - International Edition, 2019, 58, 5920-5924.	7.2	289
9	Metabolizable Semiconducting Polymer Nanoparticles for Second Nearâ€Infrared Photoacoustic Imaging. Advanced Materials, 2019, 31, e1808166.	11.1	288
10	Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer. Nature Communications, 2021, 12, 742.	5.8	269
11	Roomâ€Temperature Phosphorescence Resonance Energy Transfer for Construction of Nearâ€Infrared Afterglow Imaging Agents. Advanced Materials, 2020, 32, e2006752.	11.1	265
12	Semiconducting Polymer Nanoenzymes with Photothermic Activity for Enhanced Cancer Therapy. Angewandte Chemie - International Edition, 2018, 57, 3995-3998.	7.2	256
13	Advanced Photoacoustic Imaging Applications of Nearâ€Infrared Absorbing Organic Nanoparticles. Small, 2017, 13, 1700710.	5.2	238
14	Semiconducting Polycomplex Nanoparticles for Photothermal Ferrotherapy of Cancer. Angewandte Chemie - International Edition, 2020, 59, 10633-10638.	7.2	234
15	Photoactivatable Organic Semiconducting Pro-nanoenzymes. Journal of the American Chemical Society, 2019, 141, 4073-4079.	6.6	231
16	Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy. Nature Communications, 2021, 12, 2934.	5.8	231
17	A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nature Communications, 2019, 10, 2064.	5.8	210
18	Renalâ€clearable Molecular Semiconductor for Second Nearâ€Infrared Fluorescence Imaging of Kidney Dysfunction. Angewandte Chemie - International Edition, 2019, 58, 15120-15127.	7.2	202

#	Article	IF	CITATIONS
19	Second Nearâ€Infrared Photothermal Semiconducting Polymer Nanoadjuvant for Enhanced Cancer Immunotherapy. Advanced Materials, 2021, 33, e2003458.	11.1	197
20	Activatable Polymer Nanoenzymes for Photodynamic Immunometabolic Cancer Therapy. Advanced Materials, 2021, 33, e2007247.	11.1	194
21	Semiconducting Photothermal Nanoagonist for Remote-Controlled Specific Cancer Therapy. Nano Letters, 2018, 18, 1498-1505.	4.5	183
22	Organic Photodynamic Nanoinhibitor for Synergistic Cancer Therapy. Angewandte Chemie - International Edition, 2019, 58, 8161-8165.	7.2	183
23	Molecular Probes for Autofluorescence-Free Optical Imaging. Chemical Reviews, 2021, 121, 13086-13131.	23.0	166
24	Nearâ€Infrared Photoactivatable Semiconducting Polymer Nanoblockaders for Metastasisâ€Inhibited Combination Cancer Therapy. Advanced Materials, 2019, 31, e1905091.	11.1	157
25	Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. Biomaterials, 2017, 145, 168-177.	5.7	155
26	Redox-Activatable and Acid-Enhanced Nanotheranostics for Second Near-Infrared Photoacoustic Tomography and Combined Photothermal Tumor Therapy. ACS Nano, 2019, 13, 5816-5825.	7.3	154
27	Molecular Fluorescence and Photoacoustic Imaging in the Second Nearâ€Infrared Optical Window Using Organic Contrast Agents. Advanced Biology, 2018, 2, e1700262.	3.0	136
28	A Polymer Multicellular Nanoengager for Synergistic NIRâ€II Photothermal Immunotherapy. Advanced Materials, 2021, 33, e2008061.	11.1	124
29	A Photolabile Semiconducting Polymer Nanotransducer for Nearâ€Infrared Regulation of CRISPR/Cas9 Gene Editing. Angewandte Chemie - International Edition, 2019, 58, 18197-18201.	7.2	114
30	Molecular Chemiluminescent Probes with a Very Long Nearâ€Infrared Emission Wavelength for inâ€Vivo Imaging. Angewandte Chemie - International Edition, 2021, 60, 3999-4003.	7.2	113
31	A Renalâ€Clearable Duplex Optical Reporter for Realâ€√ime Imaging of Contrastâ€Induced Acute Kidney Injury. Angewandte Chemie - International Edition, 2019, 58, 17796-17804.	7.2	110
32	Second Nearâ€Infrared Lightâ€Activatable Polymeric Nanoantagonist for Photothermal Immunometabolic Cancer Therapy. Advanced Materials, 2021, 33, e2101410.	11.1	101
33	An Organic Afterglow Protheranostic Nanoassembly. Advanced Materials, 2019, 31, e1902672.	11.1	97
34	Nearâ€Infrared Chemiluminescent Reporters for In Vivo Imaging of Reactive Oxygen and Nitrogen Species in Kidneys. Advanced Functional Materials, 2020, 30, 2003628.	7.8	82
35	Renal clearable polyfluorophore nanosensors for early diagnosis of cancer and allograft rejection. Nature Materials, 2022, 21, 598-607.	13.3	81
36	Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window. Nature Biomedical Engineering, 2022, 6, 754-770.	11.6	78

#	Article	IF	Citations
37	A Renalâ€Clearable Macromolecular Reporter for Nearâ€Infrared Fluorescence Imaging of Bladder Cancer. Angewandte Chemie - International Edition, 2020, 59, 4415-4420.	7.2	77
38	pH-sensitive and biodegradable charge-transfer nanocomplex for second near-infrared photoacoustic tumor imaging. Nano Research, 2019, 12, 49-55.	5 . 8	70
39	Thermoresponsive Semiconducting Polymer Nanoparticles for Contrastâ€Enhanced Photoacoustic Imaging. Advanced Functional Materials, 2019, 29, 1903461.	7.8	53
40	Semiconducting Polymer Nanoenzymes with Photothermic Activity for Enhanced Cancer Therapy. Angewandte Chemie, 2018, 130, 4059-4062.	1.6	49
41	A Semiconducting Polymer Nanoâ€prodrug for Hypoxiaâ€Activated Photodynamic Cancer Therapy. Angewandte Chemie, 2019, 131, 5981-5985.	1.6	43
42	Semiconducting Polycomplex Nanoparticles for Photothermal Ferrotherapy of Cancer. Angewandte Chemie, 2020, 132, 10720-10725.	1.6	37
43	Renalâ€clearable Molecular Semiconductor for Second Nearâ€Infrared Fluorescence Imaging of Kidney Dysfunction. Angewandte Chemie, 2019, 131, 15264-15271.	1.6	32
44	A Renalâ€Clearable Duplex Optical Reporter for Realâ€Time Imaging of Contrastâ€Induced Acute Kidney Injury. Angewandte Chemie, 2019, 131, 17960-17968.	1.6	30
45	Molecular Chemiluminescent Probes with a Very Long Nearâ€Infrared Emission Wavelength for inâ€Vivo Imaging. Angewandte Chemie, 2021, 133, 4045-4049.	1.6	23
46	Organic Photodynamic Nanoinhibitor for Synergistic Cancer Therapy. Angewandte Chemie, 2019, 131, 8245-8249.	1.6	20
47	A Renalâ€Clearable Macromolecular Reporter for Nearâ€Infrared Fluorescence Imaging of Bladder Cancer. Angewandte Chemie, 2020, 132, 4445-4450.	1.6	16
48	A Photolabile Semiconducting Polymer Nanotransducer for Nearâ€Infrared Regulation of CRISPR/Cas9 Gene Editing. Angewandte Chemie, 2019, 131, 18365-18369.	1.6	15
49	Innentitelbild: A Renalâ€Clearable Macromolecular Reporter for Nearâ€Infrared Fluorescence Imaging of Bladder Cancer (Angew. Chem. 11/2020). Angewandte Chemie, 2020, 132, 4218-4218.	1.6	0
50	Photoacoustic imaging at 1064 nm wavelength with exogenous contrast agents. , $2018,$, .		0