John Cijiang He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11383932/publications.pdf

Version: 2024-02-01

172457 302126 3,121 40 29 39 citations h-index g-index papers 40 40 40 4138 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to AGE in mesangial cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11767-11772.	7.1	207
2	Down-regulation of NF-κB Transcriptional Activity in HIV-associated Kidney Disease by BRD4 Inhibition. Journal of Biological Chemistry, 2012, 287, 28840-28851.	3.4	172
3	Role of Transcription Factor Acetylation in Diabetic Kidney Disease. Diabetes, 2014, 63, 2440-2453.	0.6	171
4	High Levels of Dietary Advanced Glycation End Products Transform Low-Dersity Lipoprotein Into a Potent Redox-Sensitive Mitogen-Activated Protein Kinase Stimulant in Diabetic Patients. Circulation, 2004, 110, 285-291.	1.6	168
5	Reduced Oxidant Stress and Extended Lifespan in Mice Exposed to a Low Glycotoxin Diet. American Journal of Pathology, 2007, 170, 1893-1902.	3.8	157
6	Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney International, 2018, 93, 1330-1343.	5.2	153
7	Dysregulated Nephrin in Diabetic Nephropathy of Type 2 Diabetes: A Cross Sectional Study. PLoS ONE, 2012, 7, e36041.	2.5	136
8	Therapeutic use of traditional Chinese herbal medications for chronic kidney diseases. Kidney International, 2013, 84, 1108-1118.	5. 2	134
9	A systems approach identifies HIPK2 as a key regulator of kidney fibrosis. Nature Medicine, 2012, 18, 580-588.	30.7	131
10	Recent Advances in Traditional Chinese Medicine for Kidney Disease. American Journal of Kidney Diseases, 2015, 66, 513-522.	1.9	122
11	AP-1 Activated by Toll-like Receptors Regulates Expression of IL-23 p19. Journal of Biological Chemistry, 2009, 284, 24006-24016.	3.4	120
12	AGE-receptor-1 counteracts cellular oxidant stress induced by AGEs via negative regulation of p66 ^{<i>shc</i>} -dependent FKHRL1 phosphorylation. American Journal of Physiology - Cell Physiology, 2008, 294, C145-C152.	4.6	105
13	Nef stimulates proliferation of glomerular podocytes through activation of Src-dependent Stat3 and MAPK1,2 pathways. Journal of Clinical Investigation, 2004, 114, 643-651.	8.2	100
14	Knockdown of Stat3 activity in vivo prevents diabetic glomerulopathy. Kidney International, 2009, 76, 63-71.	5. 2	95
15	Nephrin Preserves Podocyte Viability and Glomerular Structure and Function in Adult Kidneys. Journal of the American Society of Nephrology: JASN, 2015, 26, 2361-2377.	6.1	93
16	Arctigenin attenuates diabetic kidney disease through the activation of PP2A in podocytes. Nature Communications, 2019, 10, 4523.	12.8	89
17	HIV-1 Nef Disrupts the Podocyte Actin Cytoskeleton by Interacting with Diaphanous Interacting Protein. Journal of Biological Chemistry, 2008, 283, 8173-8182.	3.4	87
18	Retinoic Acid Inhibits HIV-1–Induced Podocyte Proliferation through the cAMP Pathway. Journal of the American Society of Nephrology: JASN, 2007, 18, 93-102.	6.1	85

#	Article	IF	CITATIONS
19	JAK inhibition and progressive kidney disease. Current Opinion in Nephrology and Hypertension, 2015, 24, 88-95.	2.0	80
20	HIV-1 Upregulates VEGF in Podocytes. Journal of the American Society of Nephrology: JASN, 2008, 19, 877-883.	6.1	75
21	AGER1 regulates endothelial cell NADPH oxidase-dependent oxidant stress via PKC-Î: implications for vascular disease. American Journal of Physiology - Cell Physiology, 2010, 298, C624-C634.	4.6	70
22	Reduction in podocyte SIRT1 accelerates kidney injury in aging mice. American Journal of Physiology - Renal Physiology, 2017, 313, F621-F628.	2.7	69
23	SIRT1 Is a Potential Drug Target for Treatment of Diabetic Kidney Disease. Frontiers in Endocrinology, 2018, 9, 624.	3.5	63
24	Intronic locus determines SHROOM3 expression and potentiates renal allograft fibrosis. Journal of Clinical Investigation, 2015, 125, 208-221.	8.2	62
25	Critical role for Nef in HIV-1–induced podocyte dedifferentiation. Kidney International, 2003, 64, 1695-1701.	5.2	60
26	Retinoic Acid Utilizes CREB and USF1 in a Transcriptional Feed-Forward Loop in Order To Stimulate MKP1 Expression in Human Immunodeficiency Virus-Infected Podocytes. Molecular and Cellular Biology, 2008, 28, 5785-5794.	2.3	45
27	Puerarin attenuates diabetic kidney injury through the suppression of NOX4 expression in podocytes. Scientific Reports, 2017, 7, 14603.	3.3	40
28	Novel Retinoic Acid Receptor Alpha Agonists for Treatment of Kidney Disease. PLoS ONE, 2011, 6, e27945.	2.5	40
29	Comparison of Glomerular and Podocyte mRNA Profiles in Streptozotocin-Induced Diabetes. Journal of the American Society of Nephrology: JASN, 2016, 27, 1006-1014.	6.1	37
30	Animal models of HIV-associated nephropathy. Current Opinion in Nephrology and Hypertension, 2006, 15, 233-237.	2.0	30
31	Genetics and Epigenetics of Diabetic Nephropathy. Kidney Diseases (Basel, Switzerland), 2015, 1, 42-51.	2.5	24
32	Role of C/EBP-α in Adriamycin-induced podocyte injury. Scientific Reports, 2016, 6, 33520.	3.3	16
33	Low expression of HIV genes in podocytes accelerates the progression of diabetic kidney disease in mice. Kidney International, 2021, 99, 914-925.	5.2	16
34	Induction of Retinol Dehydrogenase 9 Expression in Podocytes Attenuates Kidney Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 1933-1941.	6.1	14
35	Tyro3 is a podocyte protective factor in glomerular disease. JCI Insight, 2018, 3, .	5.0	14
36	Role of SIRT1 in HIV-associated kidney disease. American Journal of Physiology - Renal Physiology, 2020, 319, F335-F344.	2.7	13

#	Article	IF	CITATIONS
37	Connectivity Mapping Identifies BI-2536 as a Potential Drug to Treat Diabetic Kidney Disease. Diabetes, 2021, 70, 589-602.	0.6	12
38	Sirtuin 1 in Chronic Kidney Disease and Therapeutic Potential of Targeting Sirtuin 1. Frontiers in Endocrinology, 0, 13 , .	3.5	8
39	Similarities and Differences between COVID-19-Associated Nephropathy and HIV-Associated Nephropathy. Kidney Diseases (Basel, Switzerland), 2022, 8, 1-12.	2.5	6
40	HIPK2 directs cell typeâ€"specific regulation of STAT3 transcriptional activity in Th17 cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117112119.	7.1	2