
Michel Vergnat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/113835/publications.pdf Version: 2024-02-01

MICHEL VEDCNAT

#	Article	IF	CITATIONS
1	Formation of germanium nanocrystals and amorphous nanoclusters in GeSiOx films using electron beam annealing. Vacuum, 2022, 197, 110796.	1.6	4
2	Light sensitive memristors based on GeSixOy films with Ge nanoclusters. , 2022, , .		2
3	Optical properties of GeO[SiO] and GeO[SiO2] solid alloy layers grown at low temperature. Optical Materials, 2021, 122, 111736.	1.7	5
4	Influence of phosphorus on the growth and the photoluminescence properties of Si-NCs formed in P-doped SiO/SiO ₂ multilayers. Nanoscale, 2021, 13, 19617-19625.	2.8	4
5	Resistive Switching in Non-Stoichiometric Germanosilicate Glass Films Containing Ge Nanoclusters. Electronics (Switzerland), 2020, 9, 2103.	1.8	15
6	On the Formation of Amorphous Ge Nanoclusters and Ge Nanocrystals in GeSixOy Films on Quartz Substrates by Furnace and Pulsed Laser Annealing. Semiconductors, 2020, 54, 322-329.	0.2	4
7	Negative and Positive Photoconductivity and Memristor Effect in Alloyed GeO[SiO] Films Containing Ge Nanoclusters. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000165.	1.2	14
8	Formation of SiP ₂ Nanocrystals Embedded in SiO ₂ from Phosphorus-Rich SiO _{1.5} Thin Films. Journal of Physical Chemistry C, 2020, 124, 7973-7978.	1.5	4
9	Quantum Size Effects in Germanium Nanocrystals and Amorphous Nanoclusters in GeSixOy Films. Physics of the Solid State, 2020, 62, 492-498.	0.2	15
10	Infrared photoluminescence from GeO[SiO2] and GeO[SiO] solid alloy layers irradiated with swift heavy Xe ions. Journal of Luminescence, 2020, 223, 117238.	1.5	6
11	Vibrational and Light-Emitting Properties of Si/Si1â^'xSnx Heterostructures. JETP Letters, 2019, 109, 368-371.	0.4	1
12	Memristor effect in GeO[SiO2] and GeO[SiO] solid alloys films. Applied Physics Letters, 2019, 114, .	1.5	26
13	Light-emitting defects formed in GeO/SiO2 heterostructures with assistance of swift heavy ions. Journal of Luminescence, 2019, 207, 209-212.	1.5	10
14	Luminescent properties of GeOx thin films and GeO/SiO2 heterostructures modified with swift heavy ions. , 2019, , .		0
15	Raman and photoluminescence spectroscopy of SiGe layer evolution on Si(100) induced by dewetting. Journal of Applied Physics, 2018, 123, .	1.1	26
16	Raman shifts and photoluminescence of the InSb nanocrystals ion beam-synthesized in buried SiO2 layers. Journal of Luminescence, 2018, 204, 656-662.	1.5	6
17	On the Formation of IR-Light-Emitting Ge Nanocrystals in Ge:SiO2 Films. Semiconductors, 2018, 52, 1178-1187.	0.2	4
18	Correlation between the nanoscale structure and the optical properties of Ce-doped SiO 1.5 thin films. Journal of Luminescence, 2017, 191, 88-91.	1.5	3

#	Article	IF	CITATIONS
19	Direct Insight into Ce-Silicates/Si-Nanoclusters Snowman-Like Janus Nanoparticles Formation in Ce-Doped SiO _{<i>x</i>} Thin Layers. Journal of Physical Chemistry C, 2017, 121, 12447-12453.	1.5	4
20	Plasmonic and metallic optical properties of Au/SiO2 metal-insulator films. Journal of Applied Physics, 2017, 122, .	1.1	4
21	Ge nanocrystals formed by furnace annealing of Ge(x)[SiO2](1â^'x)films: structure and optical properties. Materials Research Express, 2017, 4, 075010.	0.8	11
22	Low-temperature photoluminescence properties of Nd-doped silicon oxide thin films containing silicon nanocrystals. Journal of Luminescence, 2017, 183, 311-314.	1.5	6
23	GeSi nanocrystals formed by high temperature annealing of GeO/SiO2 multilayers: structure and optical properties. , 2016, , .		1
24	Structure and infrared photoluminescence of GeSi nanocrystals formed by high temperature annealing of GeO _x /SiO ₂ multilayers. Materials Research Express, 2016, 3, 085019.	0.8	15
25	Infrared photoluminescence from GeSi nanocrystals embedded in a germanium–silicate matrix. Journal of Experimental and Theoretical Physics, 2015, 121, 1076-1081.	0.2	8
26	Structural and optical study of Ce segregation in Ce-doped SiO1.5 thin films. Journal of Applied Physics, 2015, 118, 234308.	1.1	8
27	Plasmonic Effects in Metal-Semiconductor Nanostructures. By Alexey A. Toropov and Tatiana V. Shubina. Oxford University Press, 2015. Pp. 384. Price GBP 75.00. ISBN 9780199699315 Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 579-581.	0.5	Ο
28	Atomic scale investigation of Si and Ceâ€rich nanoclusters in Ceâ€doped SiO _{1.5} thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 1313-1316.	0.8	4
29	Structural and Photoluminescence Properties of Evaporated SnO2 Thin Films Doped with Rare Earths. Energy Procedia, 2015, 84, 141-148.	1.8	21
30	Observation of a nanoscale phase separation in blue-emitting Ce-doped SiO _{1.5} thin films. Journal of Materials Chemistry C, 2015, 3, 12499-12506.	2.7	6
31	Optical properties of Ce-doped SiO2 films: From isolated Ce3+ ions to formation of cerium silicate. Journal of Alloys and Compounds, 2015, 622, 358-361.	2.8	13
32	Photoluminescence properties of Nd-doped silicon oxide thin films containing silicon nanoparticles. Journal of Luminescence, 2014, 150, 35-39.	1.5	5
33	Applying an improved phonon confinement model to the analysis of Raman spectra of germanium nanocrystals. Journal of Experimental and Theoretical Physics, 2014, 118, 65-71.	0.2	69
34	Optical properties of tensile-strained and relaxed Ge films grown on InGaAs buffer. Journal of Applied Physics, 2014, 115, 053518.	1.1	13
35	Photoluminescence of erbium in SiOxNy alloys annealed at high temperature. Journal of Alloys and Compounds, 2014, 593, 56-60.	2.8	3
36	Optical phonons as a probe to determine both composition and strain in In x Al (1â^'x) As quantum dots embedded in an AlAs matrix. Europhysics Letters, 2014, 105, 16003.	0.7	11

#	Article	IF	CITATIONS
37	Photoluminescence properties of Ce ³⁺ ions in Ceâ€doped SiO _{1.5} thin films containing Si nanocrystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1630-1633.	0.8	5
38	Formation of Ge and GeSi nanocrystals in GeO _{<i>x</i>} /SiO ₂ multilayers. Journal Physics D: Applied Physics, 2013, 46, 275305.	1.3	28
39	Optical properties of uniformly sized silicon nanocrystals within a single silicon oxide layer. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	16
40	Tailoring the surface density of silicon nanocrystals embedded in SiOx single layers. Journal of Applied Physics, 2013, 114, 233101.	1.1	9
41	Plasmon-enhanced luminescence from silicon nanocrystals. , 2013, , .		0
42	Laser pulse crystallization and optical properties of Si/SiO ₂ and Si/Si ₃ N ₄ multilayer nano-heterostructures. Proceedings of SPIE, 2013, , .	0.8	1
43	Evolution of Silicon and Hydrogen Bonding in Silicon-Rich Nitride Films Prepared by Plasma-Enhanced Chemical Vapor Deposition and Annealed Under High Pressure. Nanoscience and Nanotechnology Letters, 2013, 4, 364-368.	0.4	0
44	Photoluminescence of Nd-doped SnO2 thin films. Applied Physics Letters, 2012, 100, .	1.5	50
45	Anomalous temperature dependence of photoluminescence in GeO x films and GeO x /SiO2 nano-heterostructures. JETP Letters, 2012, 95, 424-428.	0.4	9
46	Phenomenological quantum confinement models for excitons and phonons applied to photoluminescence and Raman spectra of silicon nanocrystals. Physica Status Solidi (B): Basic Research, 2011, 248, 2724-2727.	0.7	4
47	Comparative study of the nonlinear optical properties of Si nanocrystals fabricated by eâ€beam evaporation, PECVD or LPCVD. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 969-973.	0.8	9
48	Optical properties of a silicon-nanocrystal-based-microcavity prepared by evaporation. Optical Materials, 2011, 33, 1248-1251.	1.7	7
49	Direct and indirect excitation of Nd3+ ions sensitized by Si nanocrystals embedded in a SiO2 thin film. Journal of Applied Physics, 2011, 110, 113518.	1.1	9
50	Modification of germanium nanoclusters in GeO x films during isochronous furnace and pulse laser annealing. Technical Physics Letters, 2010, 36, 439-442.	0.2	7
51	Indirect excitation of Er3+ ions in silicon nitride films prepared by reactive evaporation. Applied Physics Letters, 2010, 97, .	1.5	12
52	Embedded Silicon Nanocrystals Studied by Photoluminescence and Raman Spectroscopies: Exciton and Phonon Confinement Effects. Journal of Physical Chemistry C, 2010, 114, 17344-17349.	1.5	18
53	Photoluminescence properties of size-controlled silicon nanocrystals at low temperatures. Journal of Applied Physics, 2009, 106, 023501.	1.1	51
54	Influence of the silicon nanocrystal size on the 1.54â€,μm luminescence of Er-doped SiO/SiO2 multilayers. Journal of Applied Physics, 2009, 105, 036101.	1.1	5

#	Article	IF	CITATIONS
55	Quasi-direct optical transitions in Ge nanocrystals embedded in GeO2 matrix. JETP Letters, 2009, 89, 76-79.	0.4	4
56	Influence of hydrogenation on the structure and visible photoluminescence of germanium oxide thin films. Journal of Luminescence, 2009, 129, 729-733.	1.5	22
57	Towards spectroscopy of a few silicon nanocrystals embedded in silica. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 998-1001.	1.3	1
58	Influence of oxygen content on the 1.54î¼m luminescence of Er-doped amorphous SiOx thin films. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1059-1062.	1.3	0
59	Scanning-probe-induced local decomposition of solid germanium monoxide films: The nano-pattering of germanium. Journal of Surface Investigation, 2009, 3, 773-780.	0.1	2
60	Structure and optical properties of SiN x : H films with Si nanoclusters produced by low-frequency plasma-enhanced chemical vapor deposition. Semiconductors, 2009, 43, 1514-1520.	0.2	17
61	The decomposition mechanism of metastable solid GeO film. , 2009, , .		1
62	Temperature Dependence of the Photoluminescence Intensity in Si3+xN4:H Films with Amorphous Si Nanoclusters: Evidence for Two Processes Involved in the Nonradiative Relaxation of Photoexcitations. ECS Transactions, 2009, 25, 35-42.	0.3	2
63	On the low-temperature synthesis of SWCNTs by thermal CVD. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2268-2271.	1.3	15
64	1.54μm luminescence of Er-doped SiOx and GeOx thin films: A comparative study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 146, 146-150.	1.7	2
65	Preparation of dense, smooth and homogeneous amorphous silicon nitride films by nitrogen-ion-beam assisted evaporation. Journal Physics D: Applied Physics, 2008, 41, 175410.	1.3	4
66	1.54μm photoluminescence of Er-doped GeOx thin films. Journal of Applied Physics, 2007, 102, 106103.	1.1	8
67	Influence of the annealing temperature on the photoluminescence of Er-doped SiO thin films. Journal of Applied Physics, 2007, 102, 053515.	1.1	18
68	X-ray diffraction and Mössbauer study of (Fe1â^'xNix)4N (0.2≤â‰ੳ.6) films. Journal of Alloys and Compounds, 2007, 440, 43-45.	2.8	9
69	Evolution with the annealing treatments of the photoluminescence mechanisms in a-SiNx:H alloys prepared by reactive evaporation. Journal of Applied Physics, 2007, 101, 123532.	1.1	61
70	Mössbauer study of (Fe1â^'xCux)4N (0.05⩽x⩽0.15) films. Physica B: Condensed Matter, 2007, 388, 18	0-182.	4
71	Structure and photoluminescence properties of evaporated GeO[sub x]â^•SiO[sub 2] multilayers. Journal of Applied Physics, 2006, 100, 113106.	1.1	30
72	Influence of the SiO thickness on the photoluminescence properties of Er-doped SiO/SiO2 multilayers. Journal of Luminescence, 2006, 121, 238-241.	1.5	1

#	Article	IF	CITATIONS
73	Luminescence efficiency at 1.5μm of Er-doped thick SiO layers and Er-doped SiOâ^•SiO2 multilayers. Applied Physics Letters, 2006, 89, 101920.	1.5	14
74	Structure and photoluminescence properties of evaporated GeOx thin films. Applied Physics Letters, 2006, 89, 011902.	1.5	62
75	Influence of the annealing treatments on the luminescence properties of SiOâ^•SiO2 multilayers. Journal of Applied Physics, 2006, 100, 123504.	1.1	44
76	Influence of the barrier thickness on the photoluminescence properties of amorphous Si/SiO multilayers. Journal of Luminescence, 2005, 113, 64-68.	1.5	7
77	Study of the photoluminescence of amorphous and crystalline silicon clusters in SiOx thin films. Optical Materials, 2005, 27, 983-987.	1.7	7
78	Photoluminescence and electroluminescence of amorphous SiOx films prepared by reactive evaporation of silicon with oxygen. Optical Materials, 2005, 27, 1074-1078.	1.7	6
79	Experimental study of a pulsed microwave plasma assisted chemical vapour deposition of carbon nanotubes. Physica Status Solidi A, 2005, 202, 2079-2084.	1.7	4
80	Photoluminescence and electroluminescence of size-controlled silicon nanocrystallites embedded in SiO2 thin films. Journal of Applied Physics, 2005, 98, 046105.	1.1	86
81	Magnetic and transport properties of evaporated Fe/SiO multilayers. Journal of Applied Physics, 2004, 96, 1159-1164.	1.1	8
82	Magnetic and transport properties of annealed Fe(SiO) alloys. Journal of Magnetism and Magnetic Materials, 2004, 284, 165-171.	1.0	2
83	Effects of the amorphous-crystalline transition on the luminescence of quantum confined silicon nanoclusters. Europhysics Letters, 2004, 66, 674-679.	0.7	25
84	Evolution with annealing treatments of the size of silicon nanocrystallites embedded in a SiNx matrix and correlation with optical properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 101, 186-189.	1.7	23
85	Influence of the temperature on the photoluminescence of silicon clusters embedded in a silicon oxide matrix. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 382-387.	1.3	17
86	Correlation between structure and photoluminescence in amorphous hydrogenated silicon nitride alloys. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 445-449.	1.3	10
87	Structure and optical properties of amorphous silicon oxide thin films with different porosities. Journal of Non-Crystalline Solids, 2003, 320, 64-75.	1.5	8
88	Visible photoluminescence in amorphous SiOx thin films prepared by silicon evaporation under a molecular oxygen atmosphere. Applied Physics Letters, 2003, 82, 3877-3879.	1.5	49
89	Influence of the substrate temperature on the structure and the optical properties of amorphous Si:H thin films prepared by reactive evaporation. Thin Solid Films, 2002, 403-404, 153-156.	0.8	8
90	Enhanced hydrogen stability in a-Si:H thin films evaporated under a flow of energetic argon ions. Applied Surface Science, 2002, 193, 175-179.	3.1	2

#	Article	IF	CITATIONS
91	Evidence of light-emitting amorphous silicon clusters confined in a silicon oxide matrix. Journal of Applied Physics, 2001, 89, 237-243.	1.1	118
92	Improvement of the photoluminescence properties in a-SiNx films by introduction of hydrogen. Applied Physics Letters, 2001, 79, 2172-2174.	1.5	28
93	Structure and optical properties of amorphous SiOx thin films prepared by co-evaporation of Si and SiO. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 484-488.	1.7	27
94	Tunneling giant magnetoresistance in coevaporated Fex(SiO)1â^'x thin films. Journal of Applied Physics, 2000, 88, 6075-6077.	1.1	9
95	Visible photoluminescence in amorphous SiNx thin films prepared by reactive evaporation. Applied Physics Letters, 2000, 77, 3499-3501.	1.5	43
96	Influence of argon and hydrogen ions energy on the structure of a-Si:H prepared by ion-beam-assisted evaporation. Nuclear Instruments & Methods in Physics Research B, 1999, 147, 79-83.	0.6	8
97	Strong visible photoluminescence in amorphous SiOx and SiOx:H thin films prepared by thermal evaporation of SiO powder. Journal of Luminescence, 1998, 80, 445-448.	1.5	41
98	Intense visible photoluminescence in amorphous SiOx and SiOx:H films prepared by evaporation. Applied Physics Letters, 1998, 72, 3157-3159.	1.5	79
99	Improvement of the stability under illumination of a-Si:H films elaborated by ion-beam-assisted evaporation using a hydrogen–argon plasma. Journal of Applied Physics, 1998, 83, 1103-1106.	1.1	11
100	Stability of Nitrogen in Sputtered Iron Nitride thin films and Multilayers. Materials Research Society Symposia Proceedings, 1997, 475, 309.	0.1	0
101	Thermal desorption spectrometry study of Si1â^'xGex:H amorphous alloys. Applied Surface Science, 1997, 119, 224-228.	3.1	2
102	Nitrogen stability measurements in sputtered iron nitride thin films by thermal desorption spectrometry. Solid State Communications, 1997, 102, 677-679.	0.9	13
103	Characterization of hydrogenated amorphous silicon prepared by ion beam assisted evaporation. Nuclear Instruments & Methods in Physics Research B, 1996, 112, 263-266.	0.6	3
104	Mössbauer characterization of FeN thin films prepared by reactive evaporation. Thin Solid Films, 1996, 275, 251-253.	0.8	3
105	Observation of (100) surfaces in p-type porous silicon by electron paramagnetic resonance. Thin Solid Films, 1996, 276, 241-243.	0.8	5
106	Densification of amorphous silicon prepared by hydrogenâ€ionâ€beamâ€assisted evaporation. Applied Physics Letters, 1996, 69, 1582-1584.	1.5	15
107	Mössbauer characterization of FeN thin films prepared by reactive evaporation. , 1996, , 251-253.		0
108	Characterization of hydrogenated amorphous silicon prepared by ion beam assisted evaporation. , 1996, , 263-266.		0

#	Article	IF	CITATIONS
109	Magnetic and Structural Properties of Iron Nitride thin Films Obtained by Argon-Nitrogen Reactive Radio-Frequency Sputtering. Materials Research Society Symposia Proceedings, 1995, 384, 103.	0.1	1
110	Homogeneous chemical etching of sand-blasted silicon substrates. Thin Solid Films, 1995, 255, 231-233.	0.8	3
111	Thermal desorption spectroscopy study of chemically etched porous silicon. Applied Surface Science, 1995, 89, 35-38.	3.1	9
112	Natural oxidation of annealed chemically etched porous silicon. Thin Solid Films, 1995, 255, 228-230.	0.8	26
113	Magnetic structure of Tb films and Tb/Y superlattices. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 771-772.	1.0	8
114	Magnetic and structural properties of sputtered Feî—,N thin films. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 717-718.	1.0	10
115	Magnetic and structural properties of iron nitride thin films obtained by argonâ€nitrogen reactive radioâ€frequency sputtering. Journal of Applied Physics, 1995, 77, 5309-5313.	1.1	56
116	Electron-paramagnetic-resonance study of the microscopic structure of the Si(001)-SiO2interface. Physical Review B, 1995, 52, R11599-R11602.	1.1	57
117	Growth and characterization studies of Fe4N thin films prepared by ion beam assisted evaporation. Applied Physics Letters, 1995, 67, 430-432.	1.5	18
118	Hydrogen effusion from evaporated Si1â^'xSnx:H (0â‰ ¤ â‰ 0 .2) amorphous semiconductors. Applied Physics Letters, 1995, 66, 1647-1649.	1.5	8
119	Polarized neutron scattering from multilayers. Neutron News, 1995, 6, 26-30.	0.1	0
120	Antiferromagnetic order in a Dy/Er superlattice. Physical Review B, 1994, 49, 12274-12277.	1.1	11
121	Low-angle neutron and x-ray scattering of hydrogenated and deuterated Mo/V superlattices. Physical Review B, 1994, 50, 11223-11226.	1.1	15
122	Interpretation of the luminescence quenching in chemically etched porous silicon by the desorption of SiH3species. Applied Physics Letters, 1994, 65, 82-84.	1.5	48
123	Visible photoluminescence from chemically etched porous silicon: Influence of the surface state. Solid State Communications, 1994, 89, 683-686.	0.9	8
124	Polarized neutron reflection study of an Er/Fe multilayer. Journal of Magnetism and Magnetic Materials, 1994, 130, 305-312.	1.0	2
125	Local hydrogen environments in Gd1â^'xFexthin films amorphous alloys from effusion experiments. Applied Physics Letters, 1994, 64, 2084-2086.	1.5	10
126	Thermal stability of titanium hydride thin films. Applied Physics Letters, 1994, 64, 1210-1211.	1.5	22

#	Article	IF	CITATIONS
127	Study of the hydrogen stability in evaporated amorphous Si1â^'xSnx:H (0â‰æâ‰0.2) alloys by neutron scattering and exodiffusion measurements. Journal of Applied Physics, 1993, 73, 483-485.	1.1	6
128	Hydrogen diffusion and densification in amorphous silicon. Physical Review B, 1993, 47, 7584-7587.	1.1	6
129	Evidence of hydrogen modulation in amorphous germanium prepared by reactive evaporation. Applied Physics Letters, 1993, 63, 2109-2111.	1.5	5
130	Some applications of low angle neutron scattering to hydrogenated amorphous silicon multilayers. Physica B: Condensed Matter, 1992, 180-181, 471-473.	1.3	0
131	Low angle polarized neutron diffraction from Tb/Fe multilayers. Physica B: Condensed Matter, 1992, 180-181, 489-491.	1.3	3
132	Structure and transport properties of amorphous SnxSi1-x alloys (0â‰廃â‰犂) prepared by evaporation under an atomic hydrogen flow. Journal of Non-Crystalline Solids, 1991, 137-138, 907-910.	1.5	6
133	Modulation and thermal stability of hydrogen in amorphous silicon. Physica B: Condensed Matter, 1991, 170, 141-145.	1.3	0
134	Modulation of Hydrogen in Amorphous Materials. Key Engineering Materials, 1991, 40-41, 311-318.	0.4	1
135	Determination of Short-Range Motion of Hydrogen in Amorphous Silicon Multilayers by Low-Angle Neutron Scattering. Europhysics Letters, 1991, 14, 457-462.	0.7	8
136	Modulation and thermal stability of hydrogen in amorphous silicon. , 1991, , 141-145.		0
137	Preparation and structure of amorphous semiconductor hydrogenated tin. Applied Physics Letters, 1990, 57, 2300-2301.	1.5	1
138	Optical studies of bonding in coevaporated amorphous silicon-tin alloys. Physical Review B, 1989, 39, 3711-3719.	1.1	10
139	Evidence of hydrogen modulation in Si/Si:H amorphous multilayers. Physical Review B, 1989, 40, 1418-1421.	1.1	13
140	Interference effect in non-specular scattering from multilayers interpretation of the rocking curves. Solid State Communications, 1989, 71, 1045-1050.	0.9	19
141	Experimental study of the dc conductivity mechanisms in amorphousSixSn1â^'xalloys. Physical Review B, 1988, 37, 8867-8874.	1.1	5
142	Evidence for amorphous multilayered silicon obtained by deposition under modulated pressure of hydrogen. Journal of Applied Physics, 1988, 64, 4536-4537.	1.1	4
143	Preparation of hydrogenated amorphous silicon tin alloys. Revue De Physique Appliquée, 1987, 22, 1803-1808.	0.4	12
144	Neutron diffraction measurements of the kinetics of crystallization of amorphous FePC and FEF3, xHF. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1986, 136, 42-44.	0.9	0

#	Article	IF	CITATIONS
145	Structure and short-range order of vapour-deposited Si _{1â^'x} Sn _x amorphous alloys. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1985, 51, 327-336.	0.6	29
146	Some aspects of the precipitation of FeÎ \pm crystallites in the FePC amorphous alloy. Solid State Communications, 1985, 53, 191-195.	0.9	6
147	STRUCTURE AND LOCAL ORDER IN AMORPHOUS Si1-x SNx SEMI-CONDUCTOR ALLOYS. Journal De Physique Colloque, 1985, 46, C8-287-C8-291.	0.2	2
148	Structure and d.c. conductivity of amorphous Si1â^'xSnx alloys. Solid State Communications, 1984, 50, 237-242.	0.9	23
149	Forming ability and stability of amorphous M x Sn 1â^'x alloys (M = V, Cr, Mn, Fe,Co, Ni, Cu). Journal of Non-Crystalline Solids, 1984, 61-62, 1243-1248.	1.5	8
150	Magnetic behavior ofFexSn1â^'xamorphous alloys near the critical composition. Physical Review B, 1983, 28, 1480-1489.	1.1	19
151	Photoluminescence of undoped and erbium-doped SiO/SiO/sub 2/ multilayers. , 0, , .		Ο