Stephen M Black

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11383033/publications.pdf

Version: 2024-02-01

23500 49773 10,465 233 58 87 citations h-index g-index papers 237 237 237 10978 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). Advances in Experimental Medicine and Biology, 2017, 967, 105-137.	0.8	249
2	Increased Superoxide Generation Is Associated With Pulmonary Hypertension in Fetal Lambs. Circulation Research, 2003, 92, 683-691.	2.0	221
3	S-nitrosylation of endothelial nitric oxide synthase is associated with monomerization and decreased enzyme activity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2619-2624.	3.3	214
4	Regulators of endothelial and epithelial barrier integrity and function in acute lung injury. Biochemical Pharmacology, 2009, 77, 1763-1772.	2.0	214
5	ET-1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L1058-L1067.	1.3	210
6	Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vascular Pharmacology, 2008, 49, 134-140.	1.0	199
7	eNOS activation and NO function: Structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity. Journal of Endocrinology, 2011, 210, 271-284.	1.2	197
8	Matrix Remodeling Promotes Pulmonary Hypertension through Feedback Mechanoactivation of the YAP/TAZ-miR-130/301 Circuit. Cell Reports, 2015, 13, 1016-1032.	2.9	193
9	Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biology, 2020, 36, 101679.	3.9	187
10	Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension. Journal of Clinical Investigation, 2014, 124, 3514-3528.	3.9	182
11	Neonatal Mice Lacking Neuronal Nitric Oxide Synthase Are Less Vulnerable to Hypoxic–Ischemic Injury. Neurobiology of Disease, 1996, 3, 64-71.	2.1	181
12	Role for Endothelin-1–Induced Superoxide and Peroxynitrite Production in Rebound Pulmonary Hypertension Associated With Inhaled Nitric Oxide Therapy. Circulation Research, 2001, 89, 357-364.	2.0	150
13	Construction and Function of Fusion Enzymes of the Human Cytochrome P450scc System. DNA and Cell Biology, 1993, 12, 371-379.	0.9	137
14	Increased oxidative stress in lambs with increased pulmonary blood flow and pulmonary hypertension: role of NADPH oxidase and endothelial NO synthase. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L1069-L1077.	1.3	136
15	Endothelin-1 decreases endothelial NOS expression and activity through ETA receptor-mediated generation of hydrogen peroxide. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L480-L487.	1.3	135
16	The role of glutathione-dependent enzymes in drug resistance., 1991, 51, 139-154.		133
17	Carnitine homeostasis, mitochondrial function and cardiovascular disease. Drug Discovery Today Disease Mechanisms, 2009, 6, e31-e39.	0.8	130
18	Activation of Constitutive Nitric-oxide Synthase Activity Is an Early Signaling Event Induced by lonizing Radiation. Journal of Biological Chemistry, 2002, 277, 15400-15406.	1.6	121

#	Article	IF	CITATIONS
19	Reactive Oxygen Species in Pulmonary Vascular Remodeling. , 2013, 3, 1011-1034.		121
20	Endothelial HIF-2α Contributes to Severe Pulmonary Hypertension by Inducing Endothelial-to-Mesenchymal Transition. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, ajplung.00096.2.	1.3	121
21	Inhibition of Protein-tyrosine Phosphatases by Mild Oxidative Stresses Is Dependent on S-Nitrosylation. Journal of Biological Chemistry, 2005, 280, 14453-14461.	1.6	120
22	Developmental Changes in Murine Brain Antioxidant Enzymes. Pediatric Research, 2003, 54, 77-82.	1.1	110
23	Regulation of Ductus Arteriosus Patency by Nitric Oxide in Fetal Lambs: The Role of Gestation, Oxygen Tension, and Vasa Vasorum. Pediatric Research, 1998, 43, 633-644.	1.1	108
24	Increased Superoxide and Endothelial NO Synthase Uncoupling in Blood Vessels of Bmal1-Knockout Mice. Circulation Research, 2012, 111, 1157-1165.	2.0	103
25	NADPH Oxidase 4 Is Expressed in Pulmonary Artery Adventitia and Contributes to Hypertensive Vascular Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1704-1715.	1.1	103
26	Increased hydrogen peroxide downregulates soluble guanylate cyclase in the lungs of lambs with persistent pulmonary hypertension of the newborn. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L660-L666.	1.3	94
27	Calcium/Calmodulin-Dependent Kinase II Mediates the Phosphorylation and Activation of NADPH Oxidase 5. Molecular Pharmacology, 2011, 80, 407-415.	1.0	89
28	sGC and PDE5 are elevated in lambs with increased pulmonary blood flow and pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L1051-L1057.	1.3	88
29	Tyrosine Nitration of ll̂Bl̂±:  A Novel Mechanism for NF-l̂ºB Activation [,] . Biochemistry, 2007, 46, 11671-11683.	1.2	88
30	Caveolin-1 is a negative regulator of NADPH oxidase-derived reactive oxygen species. Free Radical Biology and Medicine, 2014, 73, 201-213.	1.3	87
31	Asymmetric dimethylarginine inhibits HSP90 activity in pulmonary arterial endothelial cells: role of mitochondrial dysfunction. American Journal of Physiology - Cell Physiology, 2008, 294, C1407-C1418.	2.1	85
32	Nitric oxide reduces NADPH oxidase 5 (Nox5) activity by reversible S-nitrosylation. Free Radical Biology and Medicine, 2012, 52, 1806-1819.	1.3	82
33	Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF- \hat{l}^21 and reactive oxygen species: a requirement for NAD(P)H oxidase. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L288-L289.	1.3	81
34	Coordinated Regulation of Genes of the Nitric Oxide and Endothelin Pathways during the Development of Pulmonary Hypertension in Fetal Lambs. Pediatric Research, 1998, 44, 821-830.	1,1	78
35	Role of Nrf2 and Autophagy in Acute Lung Injury. Current Pharmacology Reports, 2016, 2, 91-101.	1.5	77
36	Altered carnitine homeostasis is associated with decreased mitochondrial function and altered nitric oxide signaling in lambs with pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L46-L56.	1.3	76

#	Article	IF	CITATIONS
37	Emergence of Smooth Muscle Cell Endothelin B–Mediated Vasoconstriction in Lambs With Experimental Congenital Heart Disease and Increased Pulmonary Blood Flow. Circulation, 2003, 108, 1646-1654.	1.6	74
38	Nitric oxide decreases endothelin-1 secretion through the activation of soluble guanylate cyclase. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L984-L991.	1.3	74
39	Nitric oxide and superoxide generation from endothelial NOS: modulation by HSP90. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L1444-L1453.	1.3	74
40	Inhaled nitric oxide-induced rebound pulmonary hypertension: role for endothelin-1. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H777-H785.	1.5	73
41	Role of Reactive Oxygen Species in Vascular Remodeling Associated with Pulmonary Hypertension. Antioxidants and Redox Signaling, 2003, 5, 759-769.	2.5	73
42	Alterations in zinc homeostasis underlie endothelial cell death induced by oxidative stress from acute exposure to hydrogen peroxide. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L165-L177.	1.3	73
43	Regulation of fibroblast growth factor-2 expression in pulmonary arterial smooth muscle cells involves increased reactive oxygen species generation. American Journal of Physiology - Cell Physiology, 2008, 294, C345-C354.	2.1	71
44	Deletion of Protein Tyrosine Phosphatase 1b Improves Peripheral Insulin Resistance and Vascular Function in Obese, Leptin-Resistant Mice via Reduced Oxidant Tone. Circulation Research, 2009, 105, 1013-1022.	2.0	71
45	Complex I dysfunction underlies the glycolytic switch in pulmonary hypertensive smooth muscle cells. Redox Biology, 2015, 6, 278-286.	3.9	71
46	Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L452-L476.	1.3	71
47	Altered Regulation of the ET-1 Cascade in Lambs with Increased Pulmonary Blood Flow and Pulmonary Hypertension. Pediatric Research, 2000, 47, 97-97.	1.1	70
48	Alterations in TGF- \hat{l}^21 expression in lambs with increased pulmonary blood flow and pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L209-L221.	1.3	68
49	Endothelial response to stress from exogenous Zn2+ resembles that of NO-mediated nitrosative stress, and is protected by MT-1 overexpression. American Journal of Physiology - Cell Physiology, 2006, 291, C555-C568.	2.1	68
50	ATP promotes cell survival via regulation of cytosolic [Ca ²⁺] and Bcl-2/Bax ratio in lung cancer cells. American Journal of Physiology - Cell Physiology, 2016, 310, C99-C114.	2.1	68
51	Selective Destruction of Nitric Oxide Synthase Neurons with Quisqualate Reduces Damage after Hypoxia-Ischemia in the Neonatal Rat. Pediatric Research, 1995, 38, 912-918.	1.1	67
52	Expression of neuronal nitric oxide synthase corresponds to regions of selective vulnerability to hypoxia-ischaemia in the developing rat brain. Neurobiology of Disease, 1995, 2, 145-155.	2.1	67
53	Xanthine Oxidase-Derived ROS Upregulate Egr-1 via ERK1/2 in PA Smooth Muscle Cells; Model to Test Impact of Extracellular ROS in Chronic Hypoxia. PLoS ONE, 2011, 6, e27531.	1.1	65
54	Both neuronal NO synthase and nitric oxide are required for PC12 cell differentiation: a cGMP independent pathway. Molecular Brain Research, 1999, 64, 165-178.	2.5	64

#	Article	IF	CITATIONS
55	The lectin-like domain of tumor necrosis factor improves lung function after rat lung transplantation—Potential role for a reduction in reactive oxygen species generation*. Critical Care Medicine, 2010, 38, 871-878.	0.4	64
56	Nitric oxide exposure inhibits endothelial NOS activity but not gene expression: a role for superoxide. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L833-L841.	1.3	63
57	Endothelin-1 Induces a Glycolytic Switch in Pulmonary Arterial Endothelial Cells via the Mitochondrial Translocation of Endothelial Nitric Oxide Synthase. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 1084-1095.	1.4	63
58	Heat Shock Protein 90 Inhibitors Prevent LPS-Induced Endothelial Barrier Dysfunction by Disrupting RhoA Signaling. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 170-179.	1.4	61
59	Increased endothelial NOS in lambs with increased pulmonary blood flow and pulmonary hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H1643-H1651.	1.5	60
60	Developmental differences in the shear stress-induced expression of endothelial NO synthase: changing role of AP-1. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L650-L662.	1.3	59
61	LPS-induced Acute Lung Injury Involves NF-κB–mediated Downregulation of SOX18. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 614-624.	1.4	59
62	eNOS function is developmentally regulated: uncoupling of eNOS occurs postnatally. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L232-L241.	1.3	58
63	Autophagy in neonatal hypoxia ischemic brain is associated with oxidative stress. Redox Biology, 2015, 6, 516-523.	3.9	57
64	NOS induction by NGF in basal forebrain cholinergic neurones: evidence for regulation of brain NOS by a neurotrophin. Neurobiology of Disease, 1994, 1, 51-60.	2.1	56
65	Growth factor induction of nitric oxide synthase in rat pheochromocytoma cells. Molecular Brain Research, 1997, 52, 71-77.	2.5	56
66	Expression of VEGF and its receptors Flt-1 and Flk-1/KDR is altered in lambs with increased pulmonary blood flow and pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L222-L231.	1.3	55
67	Shear stress regulation of endothelial NOS in fetal pulmonary arterial endothelial cells involves PKC. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L490-L498.	1.3	54
68	Inhaled nitric oxide inhibits NOS activity in lambs: potential mechanism for rebound pulmonary hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1849-H1856.	1.5	53
69	Endothelin-1 in Congenital Heart Disease. Pediatric Research, 2005, 57, 16R-20R.	1.1	53
70	Shear stress stimulates nitric oxide signaling in pulmonary arterial endothelial cells via a reduction in catalase activity: role of protein kinase Cl'. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L105-L116.	1.3	51
71	Fibroblast Growth Factor-2 Expression Is Altered in Lambs With Increased Pulmonary Blood Flow and Pulmonary Hypertension. Pediatric Research, 2007, 61, 32-36.	1.1	50
72	Lipopolysaccharide-induced Lung Injury Involves the Nitration-mediated Activation of RhoA. Journal of Biological Chemistry, 2014, 289, 4710-4722.	1.6	50

#	Article	IF	CITATIONS
73	Phosphodiesterase-3 inhibition prevents the increase in pulmonary vascular resistance following inhaled nitric oxide withdrawal in lambs*. Pediatric Critical Care Medicine, 2004, 5, 234-239.	0.2	49
74	Effect of PPARÎ ³ inhibition on pulmonary endothelial cell gene expression: gene profiling in pulmonary hypertension. Physiological Genomics, 2009, 40, 48-60.	1.0	48
75	Nitric oxide synthase activity and inhibition after neonatal hypoxia ischemia in the mouse brain. Developmental Brain Research, 2000, 123, 119-127.	2.1	47
76	Inhaled nitric oxide induced NOS inhibition and rebound pulmonary hypertension: a role for superoxide and peroxynitrite in the intact lamb. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L359-L366.	1.3	47
77	Glutathione Supplementation Attenuates Lipopolysaccharide-Induced Mitochondrial Dysfunction and Apoptosis in a Mouse Model of Acute Lung Injury. Frontiers in Physiology, 2012, 3, 161.	1.3	47
78	Bosentan inhibits oxidative and nitrosative stress and rescues occlusive pulmonaryhypertension. Free Radical Biology and Medicine, 2013, 56, 28-43.	1.3	47
79	Pathogenic Role of mTORC1 and mTORC2 in Pulmonary Hypertension. JACC Basic To Translational Science, 2018, 3, 744-762.	1.9	47
80	Altered endothelium-dependent relaxations in lambs with high pulmonary blood flow and pulmonary hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H311-H317.	1.5	46
81	PKC-Dependent Phosphorylation of eNOS at T495 Regulates eNOS Coupling and Endothelial Barrier Function in Response to G+ -Toxins. PLoS ONE, 2014, 9, e99823.	1.1	46
82	An Official American Thoracic Society Workshop Report: Obesity and Metabolism. An Emerging Frontier in Lung Health and Disease. Annals of the American Thoracic Society, 2017, 14, 1050-1059.	1.5	45
83	Neuronal nitric oxide synthase within paraventricular nucleus: blood pressure and baroreflex in twoâ€kidney, oneâ€clip hypertensive rats. Experimental Physiology, 2010, 95, 845-857.	0.9	44
84	Metabolic Changes Precede the Development of Pulmonary Hypertension in the Monocrotaline Exposed Rat Lung. PLoS ONE, 2016, 11, e0150480.	1.1	44
85	Endothelin-1 Impairs Nitric Oxide Signaling in Endothelial Cells Through a Protein Kinase Cl´-Dependent Activation of STAT3 and Decreased Endothelial Nitric Oxide Synthase Expression. DNA and Cell Biology, 2009, 28, 543-553.	0.9	43
86	Increased NADPH oxidase-derived superoxide is involved in the neuronal cell death induced by hypoxia–ischemia in neonatal hippocampal slice cultures. Free Radical Biology and Medicine, 2012, 53, 1139-1151.	1.3	42
87	Mechanisms of nitric oxide synthase uncoupling in endotoxin-induced acute lung injury: Role of asymmetric dimethylarginine. Vascular Pharmacology, 2010, 52, 182-190.	1.0	41
88	Increased p38 mitogen-activated protein kinase signaling is involved in the oxidative stress associated with oxygen and glucose deprivation in neonatal hippocampal slice cultures. European Journal of Neuroscience, 2011, 34, 1093-1101.	1.2	41
89	Microparticulate/nanoparticulate powders of a novel Nrf2 activator and an aerosol performance enhancer for pulmonary delivery targeting the lung Nrf2/Keap-1 pathway. Molecular Systems Design and Engineering, 2016, 1, 48-65.	1.7	41
90	Molecular mechanisms involved in adenosine-induced endothelial cell barrier enhancement. Vascular Pharmacology, 2010, 52, 199-206.	1.0	40

#	Article	IF	CITATIONS
91	Studying the S-nitrosylation of model peptides and eNOS protein by mass spectrometry. Nitric Oxide - Biology and Chemistry, 2005, 13, 176-187.	1.2	39
92	L-Carnitine preserves endothelial function in a lamb model of increased pulmonary blood flow. Pediatric Research, 2013, 74, 39-47.	1.1	39
93	Molecular mechanisms of nitric oxide-induced growth arrest and apoptosis in fetal pulmonary arterial smooth muscle cells. Nitric Oxide - Biology and Chemistry, 2003, 9, 201-210.	1.2	38
94	Progressive dysfunction of nitric oxide synthase in a lamb model of chronically increased pulmonary blood flow: a role for oxidative stress. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L756-L766.	1.3	38
95	Harvesting, identification and barrier function of human lung microvascular endothelial cells. Vascular Pharmacology, 2010, 52, 175-181.	1.0	38
96	Mechanisms Behind Resistance to PI3K Inhibitor Treatment Induced by the PIM Kinase. Molecular Cancer Therapeutics, 2018, 17, 2710-2721.	1.9	38
97	Oxidative and nitrosative stress in pediatric pulmonary hypertension: Roles of endothelin-1 and nitric oxide. Vascular Pharmacology, 2006, 45, 308-316.	1.0	37
98	PPAR- \hat{I}^3 Regulates Carnitine Homeostasis and Mitochondrial Function in a Lamb Model of Increased Pulmonary Blood Flow. PLoS ONE, 2012, 7, e41555.	1.1	37
99	Dimethylarginine Dimethylaminohydrolase II Overexpression Attenuates LPS-Mediated Lung Leak in Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 614-625.	1.4	37
100	Chloroquine is a potent pulmonary vasodilator that attenuates hypoxiaâ€induced pulmonary hypertension. British Journal of Pharmacology, 2017, 174, 4155-4172.	2.7	37
101	Endothelial Nitric Oxide Synthase Deficient Mice Are Protected from Lipopolysaccharide Induced Acute Lung Injury. PLoS ONE, 2015, 10, e0119918.	1.1	37
102	Disruption of Endothelial Cell Mitochondrial Bioenergetics in Lambs with Increased Pulmonary Blood Flow. Antioxidants and Redox Signaling, 2013, 18, 1739-1752.	2.5	36
103	Tetramethylpyrazine: A promising drug for the treatment of pulmonary hypertension. British Journal of Pharmacology, 2020, 177, 2743-2764.	2.7	36
104	Induction of apoptosis in fetal pulmonary arterial smooth muscle cells by a combined superoxide dismutase/catalase mimetic. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L305-L312.	1.3	35
105	The role of nitric oxide synthase-derived reactive oxygen species in the altered relaxation of pulmonary arteries from lambs with increased pulmonary blood flow. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1491-H1497.	1.5	35
106	The Sexual Dimorphism Associated with Pulmonary Hypertension Corresponds to a Fibrotic Phenotype. Pulmonary Circulation, 2015, 5, 184-197.	0.8	34
107	Nitric oxide induces hypoxia ischemic injury in the neonatal brain via the disruption of neuronal iron metabolism. Redox Biology, 2015, 6, 112-121.	3.9	34
108	Pulmonary blood flow alters nitric oxide production in patients undergoing device closure of atrial septal defects. Journal of the American College of Cardiology, 2000, 35, 463-467.	1.2	33

#	Article	IF	CITATIONS
109	Important role for Rac1 in regulating reactive oxygen species generation and pulmonary arterial smooth muscle cell growth. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L1314-L1322.	1.3	33
110	Hydrogen peroxide decreases endothelial nitric oxide synthase promoter activity through the inhibition of AP-1 activity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L370-L377.	1.3	33
111	Endothelin-1 stimulates catalase activity through the PKCδ-mediated phosphorylation of serine 167. Free Radical Biology and Medicine, 2014, 67, 255-264.	1.3	33
112	Lung antioxidant enzymes are regulated by development and increased pulmonary blood flow. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L960-L971.	1.3	32
113	A novel role for caveolin-1 in regulating endothelial nitric oxide synthase activation in response to H2O2 and shear stress. Free Radical Biology and Medicine, 2010, 49, 159-170.	1.3	32
114	Attenuated vasodilatation in lambs with endogenous and exogenous activation of cGMP signaling: Role of protein kinase G nitration. Journal of Cellular Physiology, 2011, 226, 3104-3113.	2.0	32
115	Nitration of Tyrosine 247 Inhibits Protein Kinase G-1α Activity by Attenuating Cyclic Guanosine Monophosphate Binding. Journal of Biological Chemistry, 2014, 289, 7948-7961.	1.6	31
116	Alterations in Nitric Oxide Production in 8-Week-Old Lambs with Increased Pulmonary Blood Flow. Pediatric Research, 2002, 52, 233-244.	1.1	30
117	Asymmetric Dimethylarginine Induces Endothelial Nitric-oxide Synthase Mitochondrial Redistribution through the Nitration-mediated Activation of Akt1*. Journal of Biological Chemistry, 2013, 288, 6212-6226.	1.6	30
118	Redox regulation of epidermal growth factor receptor signaling during the development of pulmonary hypertension. Free Radical Biology and Medicine, 2016, 95, 96-111.	1.3	30
119	LPS induces pp60 ^{c-src} -mediated tyrosine phosphorylation of Hsp90 in lung vascular endothelial cells and mouse lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L883-L893.	1.3	29
120	Endothelial upregulation of mechanosensitive channel Piezo1 in pulmonary hypertension. American Journal of Physiology - Cell Physiology, 2021, 321, C1010-C1027.	2.1	29
121	Alterations in ET-1, not nitric oxide, in 1-week-old lambs with increased pulmonary blood flow. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H480-H490.	1.5	28
122	Pulmonary artery smooth muscle cell hyperproliferation and metabolic shift triggered by pulmonary overcirculation. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H944-H957.	1.5	28
123	Hypoxia selectively upregulates cation channels and increases cytosolic [Ca ²⁺] in pulmonary, but not coronary, arterial smooth muscle cells. American Journal of Physiology - Cell Physiology, 2018, 314, C504-C517.	2.1	28
124	Nitric oxide-endothelin-1 interactions after acute ductal constriction in fetal lambs. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H862-H871.	1.5	27
125	Oxygen Glucose Deprivation in Rat Hippocampal Slice Cultures Results in Alterations in Carnitine Homeostasis and Mitochondrial Dysfunction. PLoS ONE, 2012, 7, e40881.	1.1	27
126	Activation of Calpain-2 by Mediators in Pulmonary Vascular Remodeling of Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 384-393.	1.4	27

#	Article	IF	CITATIONS
127	Salusin- \hat{l}^2 Promotes Vascular Calcification <i>via</i> Nicotinamide Adenine Dinucleotide Phosphate/Reactive Oxygen Species-Mediated Klotho Downregulation. Antioxidants and Redox Signaling, 2019, 31, 1352-1370.	2.5	27
128	Biomechanical Forces and Oxidative Stress: Implications for Pulmonary Vascular Disease. Antioxidants and Redox Signaling, 2019, 31, 819-842.	2.5	27
129	Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells. FASEB Journal, 2016, 30, 262-275.	0.2	26
130	The expression of cytochrome P450IIB1 in Saccharomyces cerevisia results in an increased mutation frequency when exposed to cyclophosphamide. Carcinogenesis, 1989, 10, 2139-2143.	1.3	25
131	A nitric oxide donor reduces brain injury and enhances recovery of cerebral blood flow after hypoxia-ischemia in the newborn rat. Neuroscience Letters, 2007, 415, 124-129.	1.0	25
132	Identification of the Cysteine Nitrosylation Sites in Human Endothelial Nitric Oxide Synthase. DNA and Cell Biology, 2008, 27, 25-33.	0.9	25
133	The lectin-like domain of TNF protects from listeriolysin-induced hyperpermeability in human pulmonary microvascular endothelial cells — A crucial role for protein kinase C-α inhibition. Vascular Pharmacology, 2010, 52, 207-213.	1.0	25
134	C-Terminus of Heat Shock Protein 70–Interacting Protein–Dependent GTP Cyclohydrolase I Degradation in Lambs with Increased Pulmonary Blood Flow. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 163-171.	1.4	25
135	Preserving mitochondrial function prevents the proteasomal degradation of GTP cyclohydrolase I. Free Radical Biology and Medicine, 2012, 53, 216-229.	1.3	24
136	Activation of the mechanosensitive Ca2+ channel TRPV4 induces endothelial barrier permeability via the disruption of mitochondrial bioenergetics. Redox Biology, 2021, 38, 101785.	3.9	24
137	Neuronal Nitric Oxide Synthase Activity in the Paraventricular Nucleus Buffers Central Endothelin-1-induced Pressor Response and Vasopressin Secretion. Journal of Cardiovascular Pharmacology, 2004, 44, S283-S288.	0.8	23
138	Hydrogen Peroxide Decreases Endothelial Nitric Oxide Synthase Promoter Activity through the Inhibition of Sp1 Activity. DNA and Cell Biology, 2009, 28, 119-129.	0.9	23
139	Endotoxin―and Mechanical Stress–Induced Epigenetic Changes in the Regulation of the Nicotinamide Phosphoribosyltransferase Promoter. Pulmonary Circulation, 2016, 6, 539-544.	0.8	23
140	Elevated zinc induces endothelial apoptosis via disruption of glutathione metabolism: role of the ADP translocator. BioMetals, 2010, 23, 19-30.	1.8	21
141	The protective role of MLCP-mediated ERM dephosphorylation in endotoxin-induced lung injury in vitro and in vivo. Scientific Reports, 2016, 6, 39018.	1.6	21
142	Advanced spray dried proliposomes of amphotericin B lung surfactant-mimic phospholipid microparticles/nanoparticles as dry powder inhalers for targeted pulmonary drug delivery. Pulmonary Pharmacology and Therapeutics, 2020, 64, 101975.	1.1	21
143	The mitochondrial redistribution of eNOS is involved in lipopolysaccharide induced inflammasome activation during acute lung injury. Redox Biology, 2021, 41, 101878.	3.9	21
144	Endothelial alterations during inhaled NO in lambs with pulmonary hypertension: implications for rebound hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L27-L35.	1.3	20

#	Article	IF	CITATIONS
145	Diabetes Mellitus Associates with Increased Right Ventricular Afterload and Remodeling in Pulmonary Arterial Hypertension. American Journal of Medicine, 2018, 131, 702.e7-702.e13.	0.6	20
146	Increased levels of alpha-class and pi-class glutathione S-transferases in cell lines resistant to 1-chloro-2,4-dinitrobenzene. FEBS Journal, 1993, 217, 671-676.	0.2	19
147	Nitric Oxide Activates p21ras and Leads to the Inhibition of Endothelial NO Synthase by Protein Nitration. DNA and Cell Biology, 2003, 22, 317-328.	0.9	19
148	Modulation of PKCδ signaling alters the shear stress-mediated increases in endothelial nitric oxide synthase transcription: role of STAT3. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L519-L526.	1.3	19
149	Sox18 Preserves the Pulmonary Endothelial Barrier Under Conditions of Increased Shear Stress. Journal of Cellular Physiology, 2014, 229, 1802-1816.	2.0	19
150	Berardinelli-Seip Congenital Lipodystrophy 2/Seipin Is Not Required for Brown Adipogenesis but Regulates Brown Adipose Tissue Development and Function. Molecular and Cellular Biology, 2016, 36, 2027-2038.	1.1	19
151	TGF- \hat{i}^21 attenuates mitochondrial bioenergetics in pulmonary arterial endothelial cells via the disruption of carnitine homeostasis. Redox Biology, 2020, 36, 101593.	3.9	19
152	RAC1 nitration at Y32 IS involved in the endothelial barrier disruption associated with lipopolysaccharide-mediated acute lung injury. Redox Biology, 2021, 38, 101794.	3.9	19
153	Characterization of Rat Neuronal Nitric Oxide Synthase Expressed in <i>Saccharomyces cerevisiae</i> DNA and Cell Biology, 1995, 14, 789-794.	0.9	18
154	Alterations in lung arginine metabolism in lambs with pulmonary hypertension associated with increased pulmonary blood flow. Vascular Pharmacology, 2009, 51, 359-364.	1.0	18
155	Caveolin 1 Is Required for the Activation of Endothelial Nitric Oxide Synthase in Response to 17Î ² -Estradiol. Molecular Endocrinology, 2010, 24, 1637-1649.	3.7	18
156	Rosiglitazone preserves pulmonary vascular function in lambs with increased pulmonary blood flow. Pediatric Research, 2013, 73, 54-61.	1.1	18
157	Pulmonary Endothelial Mechanical Sensing and Signaling, a Story of Focal Adhesions and Integrins in Ventilator Induced Lung Injury. Frontiers in Physiology, 2019, 10, 511.	1.3	18
158	Cytokines, Chemokines, and Inflammation in Pulmonary Arterial Hypertension. Advances in Experimental Medicine and Biology, 2021, 1303, 275-303.	0.8	18
159	Ca2+/Calmodulin-Dependent Protein Kinase II Contributes to Hypoxic Ischemic Cell Death in Neonatal Hippocampal Slice Cultures. PLoS ONE, 2013, 8, e70750.	1.1	18
160	Pediatric pulmonary hypertension: Roles of endothelin-1 and nitric oxide. Clinical Hemorheology and Microcirculation, 2007, 37, 111-20.	0.9	18
161	Estradiol Increases Guanosine 5′-Triphosphate Cyclohydrolase Expression Via the Nitric Oxide-Mediated Activation of Cyclic Adenosine 5′-Monophosphate Response Element Binding Protein. Endocrinology, 2009, 150, 3742-3752.	1.4	17
162	Ovine Models of Congenital Heart Disease and the Consequences of Hemodynamic Alterations for Pulmonary Artery Remodeling. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 503-514.	1.4	17

#	Article	IF	CITATIONS
163	Alterations in cGMP, soluble guanylate cyclase, phosphodiesterase 5, and Bâ€ŧype natriuretic peptide induced by chronic increased pulmonary blood flow in lambs. Pediatric Pulmonology, 2007, 42, 1057-1071.	1.0	16
164	Oxidative Stress and the Development of Endothelial Dysfunction in Congenital Heart Disease With Increased Pulmonary Blood Flow: Lessons From the Neonatal Lamb. Trends in Cardiovascular Medicine, 2010, 20, 238-246.	2.3	16
165	Role of Carnitine Acetyl Transferase in Regulation of Nitric Oxide Signaling in Pulmonary Arterial Endothelial Cells. International Journal of Molecular Sciences, 2013, 14, 255-272.	1.8	16
166	GTP cyclohydrolase I expression is regulated by nitric oxide: role of cyclic AMP. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L309-L317.	1.3	15
167	Delineating the angiogenic gene expression profile before pulmonary vascular remodeling in a lamb model of congenital heart disease. Physiological Genomics, 2011, 43, 87-98.	1.0	15
168	Sex Differences, Estrogen Metabolism and Signaling in the Development of Pulmonary Arterial Hypertension. Frontiers in Cardiovascular Medicine, 2021, 8, 719058.	1.1	15
169	The Overexpression of Copper–Zinc Superoxide Dismutase Protects NOS III from Nitric Oxide-Mediated Inhibition. DNA and Cell Biology, 2002, 21, 827-838.	0.9	14
170	p21ras Activation following hypoxia–ischemia in the newborn rat brain is dependent on nitric oxide synthase activity but p21ras does not contribute to neurologic injury. Developmental Brain Research, 2003, 146, 79-85.	2.1	14
171	Nitric oxide-endothelin-1 interactions after surgically induced acute increases in pulmonary blood flow in intact lambs. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1922-H1932.	1.5	14
172	Perinatal changes in superoxide generation in the ovine lung: Alterations associated with increased pulmonary blood flow. Vascular Pharmacology, 2010, 53, 38-52.	1.0	14
173	Mass Spectroscopy and Molecular Modeling Predict Endothelial Nitric Oxide Synthase Dimer Collapse by Hydrogen Peroxide Through Zinc Tetrathiolate Metal-Binding Site Disruption. DNA and Cell Biology, 2010, 29, 149-160.	0.9	14
174	Altered Carnitine Homeostasis in Children With Increased Pulmonary Blood Flow Due to Ventricular Septal Defects. Pediatric Critical Care Medicine, 2017, 18, 931-934.	0.2	14
175	Inhalable Nanoparticles/Microparticles of an AMPK and Nrf2 Activator for Targeted Pulmonary Drug Delivery as Dry Powder Inhalers. AAPS Journal, 2021, 23, 2.	2.2	14
176	Combined Superoxide Dismutase/Catalase Mimetics Alter Fetal Pulmonary Arterial Smooth Muscle Cell Growth. Antioxidants and Redox Signaling, 2004, 6, 191-197.	2.5	13
177	Mitochondrial Metabolism, Redox, and Calcium Homeostasis in Pulmonary Arterial Hypertension. Biomedicines, 2022, 10, 341.	1.4	13
178	Chronic endothelin A receptor blockade in lambs with increased pulmonary blood flow and pressure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L592-L597.	1.3	12
179	Inhaled nitric oxide decreases pulmonary soluble guanylate cyclase protein levels in 1-month-old lambs. Journal of Thoracic and Cardiovascular Surgery, 2004, 127, 1285-1292.	0.4	12
180	Identification of the Tyrosine Nitration Sites in Human Endothelial Nitric Oxide Synthase by Liquid Chromatography-Mass Spectrometry. European Journal of Mass Spectrometry, 2008, 14, 239-247.	0.5	12

#	Article	IF	CITATIONS
181	Nitric oxide alterations following acute ductal constriction in the fetal lamb: a role for superoxide. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L880-L887.	1.3	12
182	Use of Chimeric Forms of Neuronal Nitric-Oxide Synthase as Dominant Negative Mutants. IUBMB Life, 1999, 48, 333-338.	1.5	11
183	Use of Chimeric Forms of Neuronal Nitricâ€Oxide Synthase as Dominant Negative Mutants. IUBMB Life, 1999, 48, 333-338.	1.5	11
184	BRAIN NITRIC OXIDE SYNTHASE LEVELS INCREASE IN RESPONSE TO ANTENATAL ETHANOL EXPOSURE. Alcohol and Alcoholism, 2004, 39, 101-105.	0.9	11
185	Early Determinants of Pulmonary Vascular Remodeling in Animal Models of Complex Congenital Heart Disease. Circulation, 2011, 123, 916-923.	1.6	11
186	Novel Peptide for Attenuation of Hyperoxia-induced Disruption of Lung Endothelial Barrier and Pulmonary Edema via Modulating Peroxynitrite Formation. Journal of Biological Chemistry, 2014, 289, 33355-33363.	1.6	11
187	Overexpression of Nitric Oxide Synthase Restores Circulating Angiogenic Cell Function in Patients With Coronary Artery Disease: Implications for Autologous Cell Therapy for Myocardial Infarction. Journal of the American Heart Association, 2016, 5, .	1.6	11
188	Extracellular adenosine-induced Rac1 activation in pulmonary endothelium: Molecular mechanisms and barrier-protective role. Journal of Cellular Physiology, 2018, 233, 5736-5746.	2.0	11
189	Tetrahydrobiopterin and nitric oxide synthase dimer levels are not changed following hypoxia–ischemia in the newborn rat. Developmental Brain Research, 2005, 156, 183-192.	2.1	10
190	Nordihydroguaiaretic Acid Increases Endothelial Nitric Oxide Synthase Expression via the Transcription Factor AP-1. DNA and Cell Biology, 2007, 26, 853-862.	0.9	10
191	Chronic inhibition of PPAR- \hat{l}^3 signaling induces endothelial dysfunction in the juvenile lamb. Pulmonary Pharmacology and Therapeutics, 2013, 26, 271-280.	1.1	10
192	Iron metabolism, oxidative stress, and neonatal brain injury. Neural Regeneration Research, 2016, 11, 725.	1.6	10
193	The Overexpression Catalase Reduces NO-Mediated Inhibition of Endothelial NO Synthase. IUBMB Life, 2002, 54, 261-265.	1.5	9
194	Tezosentan increases nitric oxide signaling via enhanced hydrogen peroxide generation in lambs with surgically induced acute increases in pulmonary blood flow. Journal of Cellular Biochemistry, 2013, 114, 435-447.	1.2	9
195	Hyper-activation of pp60 Src limits nitric oxide signaling by increasing asymmetric dimethylarginine levels during acute lung injury. Free Radical Biology and Medicine, 2017, 102, 217-228.	1.3	9
196	Chimeric Forms of Neuronal Nitric Oxide Synthase Identify Different Regions of the Reductase Domain that Are Essential for Dimerization and Activity. DNA and Cell Biology, 1999, 18, 397-407.	0.9	8
197	Asymmetric Dimethylarginine Stimulates Akt1 Phosphorylation via Heat Shock Protein 70–Facilitated Carboxyl-Terminal Modulator Protein Degradation in Pulmonary Arterial Endothelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 275-287.	1.4	8
198	Increased sterigmatocystin-induced mutation frequency in Saccharomyces cerevisiae expressing cytochrome P450 CYP2B1. Biochemical Pharmacology, 1992, 43, 374-376.	2.0	6

#	Article	IF	CITATIONS
199	Detrimental effect of nitric oxide inhibition in experimental bacterial meningitis. Annals of Neurology, 1996, 39, 555-555.	2.8	6
200	<i>^i>β</i> _{<i>3</i>} <i>-Adrenoceptor, glutathionylation, and diabetic cardiomyopathy</i> . Focus on "β ₃ -Adrenoceptor activation relieves oxidative inhibition of the cardiac Na ⁺ -K ⁺ pump in hyperglycemia induced by insulin receptor blockade― American Journal of Physiology - Cell Physiology, 2015, 309, C283-C285.	2.1	6
201	Adipose-derived human stem/stromal cells: comparative organ specific mitochondrial bioenergy profiles. SpringerPlus, 2016, 5, 2057.	1.2	6
202	Advanced therapeutic inhalation aerosols of a Nrf2 activator and RhoA/Rho kinase (ROCK) inhibitor for targeted pulmonary drug delivery in pulmonary hypertension: design, characterization, aerosolization, <i>in vitro</i> 2D/3D human lung cell cultures, and <i>in vivo</i> efficacy. Therapeutic Advances in Respiratory Disease, 2021, 15, 175346662199824.	1.0	6
203	Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF-1 and reactive oxygen species: a requirement for NAD(PH) oxidase., 2004, 2004, 5053-6.		5
204	Purification and functional analysis of protein kinase G-1 \hat{l} ± using a bacterial expression system. Protein Expression and Purification, 2011, 79, 271-276.	0.6	5
205	Postâ€translational modification in the gas phase: mechanism of cysteine Sâ€nitrosylation via ionâ€molecule reactions. Rapid Communications in Mass Spectrometry, 2011, 25, 3216-3222.	0.7	5
206	Identification of S1PR3 gene signature involved in survival of sepsis patients. BMC Medical Genomics, 2021, 14, 43.	0.7	5
207	Hypoxia-Inducible Factor 2-Alpha Mediated Gene Sets Differentiate Pulmonary Arterial Hypertension. Frontiers in Cell and Developmental Biology, 2021, 9, 701247.	1.8	5
208	Combination Therapy With Rapamycin and Low Dose Imatinib in Pulmonary Hypertension. Frontiers in Pharmacology, 2021, 12, 758763.	1.6	5
209	Protein engineering to develop a redox insensitive endothelial nitric oxide synthase. Redox Biology, 2014, 2, 156-164.	3.9	4
210	Arginine recycling in endothelial cells is regulated BY HSP90 and the ubiquitin proteasome system. Nitric Oxide - Biology and Chemistry, 2021, 108, 12-19.	1.2	4
211	Comparison of I-Carnitine and I-Carnitine HCL salt for targeted lung treatment of pulmonary hypertension (PH) as inhalation aerosols: Design, comprehensive characterization, in vitro 2D/3D cell cultures, and in vivo MCT-Rat model of PH. Pulmonary Pharmacology and Therapeutics, 2020, 65, 101998.	1.1	4
212	Advanced Microparticulate/Nanoparticulate Respirable Dry Powders of a Selective RhoA/Rho Kinase (Rock) Inhibitor for Targeted Pulmonary Inhalation Aerosol Delivery. Pharmaceutics, 2021, 13, 2188.	2.0	4
213	Nitration of protein kinase G-Iα modulates cyclic nucleotide crosstalk via phosphodiesterase 3A: Implications for acute lung injury. Journal of Biological Chemistry, 2021, 297, 100946.	1.6	3
214	Does Targeting the Lipophilic Milieu Provide Advantages for an Endothelin Antagonist?. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2009, 9, 75-78.	3.4	3
215	New insights into acute lung injury. Vascular Pharmacology, 2010, 52, 171-174.	1.0	2
216	Improved metabolism and redox state with a novel preservation solution: implications for donor lungs after cardiac death (DCD). Pulmonary Circulation, 2017, 7, 494-504.	0.8	2

#	Article	IF	Citations
217	Compartmentalization of Redox-Regulated Signaling in the Pulmonary Circulation. Antioxidants and Redox Signaling, 2019, 31, 801-803.	2.5	2
218	Mechanical forces alter endothelin†signaling: comparative ovine models of congenital heart disease. Pulmonary Circulation, 2020, 10, 1-12.	0.8	2
219	Therapeutics in pulmonary hypertension. , 2019, , 313-322.		2
220	Anti-inflammatory Effects of Statins in Lung Vascular Pathology: From Basic Science to Clinical Trials. Advances in Experimental Medicine and Biology, 2021, 1303, 33-56.	0.8	1
221	Alterations in Endogenous Nitric Oxide Production After Cardiopulmonary Bypass in Lambs With Normal and Increased Pulmonary Blood Flow. Circulation, 2000, 102, .	1.6	1
222	Dominant Negative Neuronal Nitric Oxide Synthase in Paraventricular Nucleus Augments Blood Pressure in Two Kidneyâ€One Clip Hypertensive Rats. FASEB Journal, 2008, 22, 969.37.	0.2	0
223	LPSâ€induced postâ€translational modifications of hsp90 in pulmonary endothelial cells. FASEB Journal, 2009, 23, 1024.14.	0.2	0
224	Estrogen reduces AHR, stimulates NO release and inhibits ROS production in murine asthmatic airways. FASEB Journal, 2009, 23, 622.11.	0.2	0
225	Adenosine attenuates the lipopolysaccharide (LPS) induced endothelial barrier dysfunction in murine model of acute lung injury. FASEB Journal, 2010, 24, 111.2.	0.2	0
226	Glutathione Supplementation Attenuates Inflammation and Improves Lung Mechanics in a Murine Model of Acute Lung Injury. FASEB Journal, 2011, 25, 1101.11.	0.2	0
227	Hsp90 inhibition prevents bacterial lipopolysaccharideâ€induced and RhoAâ€mediated signaling leading to paracellular hyperâ€permeability in human lung microvascular endothelial cells. FASEB Journal, 2012, 26, 862.9.	0.2	0
228	Activation of calpain in pulmonary arterial smooth muscle cells (PASMCs). FASEB Journal, 2013, 27, 1141.5.	0.2	0
229	LPS induces pp60 câ€src mediated tyrosine phosphorylation of hsp90 in lung vascular endothelial cells and mouse lung. FASEB Journal, 2013, 27, 1131.5.	0.2	0
230	Oxidative Stress and Pulmonary Vascular Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice, 2014, , 457-480.	0.4	0
231	Editorial: Pathophysiology and Pathogenic Mechanisms of Pulmonary Vascular Disease. Frontiers in Physiology, 2022, 13, 854265.	1.3	0
232	SOX18-associated gene signature predicts sepsis outcome American Journal of Translational Research (discontinued), 2022, 14, 1807-1817.	0.0	0
233	Abstract 13551: RhoA Mediates Pressure-Induced Endothelial Hyperpermeability. Circulation, 2021, 144, .	1.6	0