
Yanhao Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11381963/publications.pdf Version: 2024-02-01

Υλήμλο Chenc

#	Article	IF	CITATIONS
1	PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nature Plants, 2021, 7, 25-33.	4.7	140
2	A quantitative trait locus, <i><scp>qSE</scp>3</i> , promotes seed germination and seedling establishment under salinity stress in rice. Plant Journal, 2019, 97, 1089-1104.	2.8	107
3	CRISPR–Act3.0 for highly efficient multiplexed gene activation in plants. Nature Plants, 2021, 7, 942-953.	4.7	99
4	Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nature Communications, 2021, 12, 1944.	5.8	79
5	Influence of isopropylmalate synthase <i>Os<scp>IPMS</scp>1</i> on seed vigour associated with amino acid and energy metabolism in rice. Plant Biotechnology Journal, 2019, 17, 322-337.	4.1	69
6	Boosting plant genome editing with a versatile CRISPR-Combo system. Nature Plants, 2022, 8, 513-525.	4.7	60
7	Proteomic Analysis Reveals Proteins Involved in Seed Imbibition under Salt Stress in Rice. Frontiers in Plant Science, 2016, 7, 2006.	1.7	32
8	Exploring C-To-G Base Editing in Rice, Tomato, and Poplar. Frontiers in Genome Editing, 2021, 3, 756766.	2.7	32
9	CRISPRâ€BETS: a baseâ€editing design tool for generating stop codons. Plant Biotechnology Journal, 2022, 20, 499-510.	4.1	21
10	Highly Efficient Genome Editing in Plant Protoplasts by Ribonucleoprotein Delivery of CRISPR-Cas12a Nucleases. Frontiers in Genome Editing, 2022, 4, 780238.	2.7	21
11	Identification of <i>OsPK5</i> involved in rice glycolytic metabolism and GA/ABA balance for improving seed germination via genome-wide association study. Journal of Experimental Botany, 2022, 73, 3446-3461.	2.4	19
12	Physiological characteristics of cold stratification on seed dormancy release in rice. Plant Growth Regulation, 2019, 89, 131-141.	1.8	18
13	Genome-wide association analysis of panicle exsertion and uppermost internode in rice (Oryza sativa) Tj ETQq1 I	. 0,784314 1.7	4 rgBT /Over
14	<i>OsHIPL1</i> , a hedgehogâ€interacting proteinâ€like 1 protein, increases seed vigour in rice. Plant Biotechnology Journal, 2022, 20, 1346-1362.	4.1	11
15	Comparative analysis of salt responsive gene regulatory networks in rice and Arabidopsis. Computational Biology and Chemistry, 2020, 85, 107188.	1.1	5
16	Expanding the targeting scope of Foklâ€dCas nuclease systems with SpRY and Mb2Cas12a. Biotechnology Journal, 2022, 17, e2100571.	1.8	3