
Leonard Lothstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11381412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pivarubicin Is More Effective Than Doxorubicin Against Triple-Negative Breast Cancer In Vivo. Oncology Research, 2020, 28, 451-465.	1.5	2
2	Formulation, Development, and In Vitro Evaluation of a CD22 Targeted Liposomal System Containing a Non-Cardiotoxic Anthracycline for B Cell Malignancies. Pharmaceutics, 2018, 10, 50.	4.5	5
3	Involvement of PKC delta (PKCÎ) in the resistance against different doxorubicin analogs. Breast Cancer Research and Treatment, 2011, 126, 577-587.	2.5	23
4	Protection from Doxorubicin-Induced Cardiomyopathy Using the Modified Anthracycline <i>N</i> -Benzyladriamycin-14-valerate (AD 198). Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 223-230.	2.5	26
5	Interferon-resistant Daudi Cell Line with a Stat2 Defect Is Resistant to Apoptosis Induced by Chemotherapeutic Agents. Journal of Biological Chemistry, 2009, 284, 27808-27815.	3.4	26
6	<i>N</i> -Benzyladriamycin-14-valerate (AD 198): A Non-Cardiotoxic Anthracycline That Is Cardioprotective through PKC-ϵ Activation. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 658-664.	2.5	19
7	Phosphorylation of mitochondrial phospholipid scramblase 3 by protein kinase C-Î′ induces its activation and facilitates mitochondrial targeting of tBid. Journal of Cellular Biochemistry, 2007, 101, 1210-1221.	2.6	52
8	N-Benzyladriamycin-14-valerate (AD 198) cytotoxicty circumvents Bcr-Abl anti-apoptotic signaling in human leukemia cells and also potentiates imatinib cytotoxicity. Leukemia Research, 2007, 31, 1085-1095.	0.8	10
9	N-benzyladriamycin-14-valerate (AD 198) activates protein kinase C-?? holoenzyme to trigger mitochondrial depolarization and cytochrome c release independently of permeability transition pore opening and Ca2+ influx. Anti-Cancer Drugs, 2006, 17, 495-502.	1.4	16
10	N-Benzyladriamycin-14-Valerate (AD198) Induces Apoptosis through Protein Kinase C-Β–Induced Phosphorylation of Phospholipid Scramblase 3. Cancer Research, 2005, 65, 10016-10023.	0.9	24
11	Circumvention of Nuclear Factor κB-Induced Chemoresistance by Cytoplasmic-Targeted Anthracyclines. Molecular Pharmacology, 2004, 65, 1038-1047.	2.3	19
12	ATM and the Catalytic Subunit of DNA-Dependent Protein Kinase Activate NF-κB through a Common MEK/Extracellular Signal-Regulated Kinase/p90 rsk Signaling Pathway in Response to Distinct Forms of DNA Damage. Molecular and Cellular Biology, 2004, 24, 1823-1835.	2.3	122
13	Novel extranuclear-targeted anthracyclines override the antiapoptotic functions of Bcl-2 and target protein kinase C pathways to induce apoptosis. Molecular Cancer Therapeutics, 2002, 1, 469-81.	4.1	19
14	Interaction of the novel anthracycline antitumor agent N-benzyladriamycin-14-valerate with the C1-regulatory domain of protein kinase C: structural requirements, isoform specificity, and correlation with drug cytotoxicity. Molecular Cancer Therapeutics, 2002, 1, 483-92.	4.1	19
15	Anthracycline drug targeting: cytoplasmic versus nuclear – a fork in the road. Drug Resistance Updates, 2001, 4, 169-177.	14.4	67
16	Molecular Models ofN-Benzyladriamycin-14-valerate (AD 198) in Complex with the Phorbol Ester-Binding C1b Domain of Protein Kinase C-δ. Journal of Medicinal Chemistry, 2001, 44, 1028-1034.	6.4	15
17	Catalytic inhibition of DNA topoisomerase II by N-benzyladriamycin (AD 288). Biochemical Pharmacology, 2000, 60, 1621-1628.	4.4	12
18	Cytotoxicity and intracellular biotransformation of N-benzyladriamycin-14-yalerate (AD 198) are modulated by changes in 14-O-acyl chain length. Anti-Cancer Drugs, 1998, 9, 58-66.	1.4	17

LEONARD LOTHSTEIN

#	Article	IF	CITATIONS
19	Hydroxylation at C-3′ of doxorubicin alters the selected phenotype of cellular drug resistance. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 1807-1812.	2.2	15
20	P-glycoprotein overexpression in mouse cells does not correlate with resistance to N-benzyladriamycin-14-valerate (AD 198). Anti-Cancer Drugs, 1994, 5, 623-633.	1.4	5
21	Multidrug Resistance in the Mouse Macrophage-Like Cell Line J774.2. , 1988, , 223-242.		6
22	Expression of phenotypic traits following modulation of colchicine resistance in J774.2 cells. Journal of Cellular Physiology, 1986, 127, 253-260.	4.1	22
23	The Composition and General Topology of RNA and Protein in Monomer 40 S Ribonucleoprotein Particles. , 1981, , 49-87.		13
24	The release of 40S hnRNP particles by brief digestion of HeLa nuclei with micrococcal nuclease. Nucleic Acids Research, 1980, 8, 3639-3658.	14.5	37