
G I Maldonado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1138139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A numeric investigation of the rake face stress distribution in orthogonal machining. Journal of Materials Processing Technology, 2002, 123, 114-119.	6.3	27
2	Employing Nodal Generalized Perturbation Theory for the Minimization of Feed Enrichment during Pressurized Water Reactor In-Core Nuclear Fuel Management Optimization. Nuclear Science and Engineering, 1995, 121, 312-325.	1.1	20
3	Application of Nonlinear Nodal Diffusion Generalized Perturbation Theory to Nuclear Fuel Reload Optimization. Nuclear Technology, 1995, 110, 198-219.	1.2	20
4	Recycling heterogeneous americium targets in a boiling water reactor. Annals of Nuclear Energy, 2010, 37, 256-264.	1.8	12
5	Neural Network and Perturbation Theory Hybrid Models for Eigenvalue Prediction. Nuclear Science and Engineering, 1999, 132, 78-89.	1.1	11
6	An Application of Linear Superposition to Estimating Lattice-Physics Parameters. Nuclear Science and Engineering, 2001, 137, 156-172.	1.1	11
7	Neutronics modeling of the High Flux Isotope Reactor using COMSOL. Annals of Nuclear Energy, 2011, 38, 2594-2605.	1.8	11
8	Uncertainty Underprediction in Monte Carlo Eigenvalue Calculations. Nuclear Science and Engineering, 2013, 173, 276-292.	1.1	10
9	Nuclear Transmutations in HFIR's Beryllium Reflector and Their Impact on Reactor Operation and Reflector Disposal. Nuclear Technology, 2012, 177, 395-412.	1.2	9
10	Enhancement of a subcritical experimental facility via MCNP simulations. Annals of Nuclear Energy, 2008, 35, 263-268.	1.8	8
11	Predicting neutron diffusion eigenvalues with a query-based adaptive neural architecture. IEEE Transactions on Neural Networks, 1999, 10, 790-800.	4.2	7
12	Neutronic Evaluation of a Liquid Salt–Cooled Reactor Assembly. Nuclear Science and Engineering, 2017, 187, 166-184.	1.1	7
13	A review of thermal hydraulics systems analysis for breeding blanket design and future needs for fusion engineering demonstration facility design and licensing. Fusion Engineering and Design, 2021, 172, 112769.	1.9	7
14	FINITE ELEMENT ANALYSIS OF CHIP FORMATION IN GROOVED TOOL METAL CUTTING. Machining Science and Technology, 2000, 4, 305-316.	2.5	5
15	Validation of a Monte Carlo based depletion methodology via High Flux Isotope Reactor HEU post-irradiation examination measurements. Nuclear Engineering and Design, 2010, 240, 1033-1042.	1.7	5
16	Creation of problem-dependent Doppler-broadened cross sections in the KENO Monte Carlo code. Annals of Nuclear Energy, 2016, 88, 49-56.	1.8	5
17	Sensitivity Studies and Experimental Evaluation for Optimizing Transcurium Isotope Production. Nuclear Science and Engineering, 2017, 185, 473-483.	1.1	5
18	Increasing transcurium production efficiency through directed resonance shielding. Annals of Nuclear Energy, 2013, 60, 267-273.	1.8	4

G I MALDONADO

#	Article	IF	CITATIONS
19	BWROPT: A multi-cycle BWR fuel cycle optimization code. Nuclear Engineering and Design, 2015, 291, 236-243.	1.7	4
20	Assessment of BISON capabilities for component-level prediction of tritium transport in fusion and fission applications. Fusion Engineering and Design, 2022, 175, 112996.	1.9	4
21	Power Distribution Analysis for the ORNL High Flux Isotope Reactor Critical Experiment 3. Nuclear Science and Engineering, 2010, 164, 53-68.	1.1	3
22	SMR Fuel Cycle Optimization Using LWROpt. Journal of Nuclear Engineering and Radiation Science, 2017, 3, .	0.4	3
23	Implementation of the direct <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si9.gif" overflow="scroll"> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo stretchy="false"> (<mml:mi>î± </mml:mi> <mml:mtext>,</mml:mtext> <mml:mi>î² </mml:mi> <mml:mo)< td=""><td>Tj.8TQq1</td><td>130.78431</td></mml:mo)<></mml:mo </mml:mrow></mml:math>	T j. 8TQq1	130.78431
24	of Nuclear Energy, 2017, 101, 270 277. Optimizing LWR cost of margin one fuel pin at a time. IEEE Transactions on Nuclear Science, 2005, 52, 996-1003.	2.0	2
25	Loading beryllium targets to extend the high flux isotope reactor's cycle length. Annals of Nuclear Energy, 2006, 33, 664-672.	1.8	2
26	Two-dimensional hexagonal geometry discontinuity factors at the core periphery. Annals of Nuclear Energy, 2017, 107, 49-52.	1.8	2
27	Benchmark evaluation of zero-power critical parameters for the Temelin VVER nuclear reactor using SERPENT & NESTLE and MCNP. Nuclear Engineering and Design, 2019, 353, 110243.	1.7	2
28	Speedup of Particle Transport Problems with a Beowulf Cluster. American Journal of Applied Sciences, 2006, 3, 1948-1951.	0.2	2
29	Neutronic Analysis of an Advanced Fuel Design Concept for the High Flux Isotope Reactor. Nuclear Science and Engineering, 2009, 162, 87-97.	1.1	1
30	SCALE AND SERPENT TWO-GROUP CROSS-SECTION DATA GENERATION. Acta Polytechnica CTU Proceedings, 2018, 19, 7.	0.3	1
31	Two-Step Procedure for Liquid-Salt-Cooled-Reactor Analysis. Nuclear Technology, 2018, 204, 299-317.	1.2	1
32	Exponential Time Differencing Schemes for Fuel Depletion and Transport in Molten Salt Reactors: Theory and Implementation. Nuclear Science and Engineering, 2022, 196, 497-525.	1.1	1
33	Title is missing!. Journal of Supercomputing, 2002, 23, 185-192.	3.6	Ο
34	Thermomechanical Safety Analyses for a 238Pu Production Target at the HFIR. Journal of Nuclear Engineering and Radiation Science, 2019, 5, .	0.4	0