Cih Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/113803/publications.pdf

Version: 2024-02-01

	1163117	1125743
188	8	13
citations	h-index	g-index
		0.1 =
30	30	217
docs citations	times ranked	citing authors
	citations 30	188 8 citations h-index 30 30

#	Article	IF	CITATIONS
1	Dual Sensing Arrays for Surface Plasmon Resonance (SPR) and Surfaceâ€Enhanced Raman Scattering (SERS) Based on Nanowire/Nanorod Hybrid Nanostructures. Advanced Materials Interfaces, 2018, 5, 1801064.	3.7	39
2	Low-Cost and Rapid Fabrication of Metallic Nanostructures for Sensitive Biosensors Using Hot-Embossing and Dielectric-Heating Nanoimprint Methods. Sensors, 2017, 17, 1548.	3.8	24
3	Application of graphene–polymer composite heaters in gas-assisted micro hot embossing. RSC Advances, 2017, 7, 6336-6344.	3.6	20
4	Ribbed package geometry for reducing thermal warpage and wire sweep during PBGA encapsulation. IEEE Transactions on Components and Packaging Technologies, 2000, 23, 700-706.	1.3	13
5	Secondary gas penetrations in ribs during full-shot gas-assisted injection molding. Advances in Polymer Technology, 2003, 22, 225-237.	1.7	11
6	Optimization of heat-treatment parameters in hardening of titanium alloy Ti-6Al-4V by using the Taguchi method. International Journal of Advanced Manufacturing Technology, 2017, 90, 753-761.	3.0	9
7	Novel Real-Time Temperature Diagnosis of Conventional Hot-Embossing Process Using an Ultrasonic Transducer. Sensors, 2014, 14, 19493-19506.	3.8	8
8	Development of high-flexible triboelectric generators using plastic metal as electrodes. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	8
9	Electromagnetic Field-Aided Magnetic Soft Mold Reverse Imprinting Technology Applied in Microstructure Replication. Polymer-Plastics Technology and Engineering, 2011, 50, 1077-1083.	1.9	7
10	Hot embossing of microstructure with moving induction heating and gas-assisted pressuring. Microsystem Technologies, 2020, 26, 957-967.	2.0	7
11	Substrate Effect on Characteristics of PbZr _x Ti _{1â^'x} O ₃ (PZT) Film. Integrated Ferroelectrics, 2014, 150, 51-58.	0.7	6
12	CO2-assisted thermal fusion bonding of heterogeneous materials by use of surface nano-pillars. Microsystem Technologies, 2013, 19, 151-157.	2.0	5
13	A novel flexible heating element using graphene polymeric composite ink on polyimide film. Microsystem Technologies, 2018, 24, 3283-3289.	2.0	5
14	Wearable sensors developed using a novel plastic metal material. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	5
15	Development of two step carbon dioxide assisted thermal fusion PMMA bonding process. Microsystem Technologies, 2012, 18, 409-414.	2.0	3
16	Magnetic fluid microstructure curved surface uniform embossing and photocuring process technology. Polymers for Advanced Technologies, 2016, 27, 630-641.	3.2	3
17	A scaling law of particle transport in inkjet-printed particle-laden polymeric drops. International Journal of Heat and Mass Transfer, 2022, 191, 122840.	4.8	3
18	Fabrication of Optical Waveguide Devices Using Electromagnetic Assisted Nanoimprinting., 2009,,.		2

#	Article	IF	CITATIONS
19	Development of radio-frequency heating-assisted nanoimprint with PETG solution for nanostructure-based biosensors. AIP Advances, 2017, 7, .	1.3	2
20	Induction heating ferromagnetic particles embedded PDMS mold for microstructure embossing. Journal of Physics Communications, 2022, 6, 025002.	1.2	2
21	Gas-Assisted Nanoparticle Fluid Magnetic Imprinting Technology in Micro-Lens Manufacture and the Application of Projection Lithography. Polymer-Plastics Technology and Engineering, 2009, 48, 549-553.	1.9	1
22	Development and discussion of asymmetric magnetic soft mode electromagnetic imprinting process technology. Microsystem Technologies, 2013, 19, 1177-1184.	2.0	1
23	Real-time diagnosis of gas-assisted hot embossing process by ultrasound. Polymer Engineering and Science, 2013, 53, n/a-n/a.	3.1	1
24	Double-sided UV roller imprinting of microstructures on transparent plates. Microsystem Technologies, 2017, 23, 5833-5839.	2.0	1
25	Fabrication of large-area V-groove microstructures using gasbag-pressuring edge-irradiating UV imprinting. Microsystem Technologies, 2019, 25, 811-817.	2.0	1
26	Development of a novel low-temperature differential hollow roller using an ultra-thin heating element of graphene polymeric composite material. Microsystem Technologies, 2020, 26, 2561-2567.	2.0	1
27	A novel micro-scale recombining technique using lateral joining for a large-area molding with small features. , 0, , .		O
28	A Novel Magnetic Nickel Mold Combined Nano-Particle Fluid Electromagnetism Imprinting on Replicating Microstructures. , 2009, , .		0
29	Fabrication of Microlens Arrays by Using Nano-Particle Fluid Imprinting Technology. , 2009, , .		О
30	Fabrication of a light-intensity-enhancement component by using computer-controlled ultraviolet curing and air-pressing imprinting. Microsystem Technologies, 2019, 25, 31-37.	2.0	0