

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1137951/publications.pdf Version: 2024-02-01

XIN CAO

#	Article	IF	CITATIONS
1	A direct method for detecting proteins in body fluids by Surface-Enhanced Raman Spectroscopy under native conditions. Biosensors and Bioelectronics, 2022, 200, 113907.	10.1	17
2	A novel enhanced substrate for label-free detection of SARS-CoV-2 based on surface-enhanced Raman scattering. Sensors and Actuators B: Chemical, 2022, 359, 131568.	7.8	27
3	Rapid detection of viruses: Based on silver nanoparticles modified with bromine ions and acetonitrile. Chemical Engineering Journal, 2022, 438, 135589.	12.7	39
4	Label-Free Detection of C–T Mutations by Surface-Enhanced Raman Spectroscopy Using Thiosulfate-Modified Nanoparticles. Analytical Chemistry, 2021, 93, 1951-1956.	6.5	14
5	Understanding the dependence of streamer initiation on hydrometeors size using Raether-Meek criterion. Journal of Electrostatics, 2021, 112, 103602.	1.9	1
6	Study on Dominant Parameters Determining Streamer Initiation from Hydrometeors in Thundercloud Fields. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034936.	3.3	1
7	Label-Free Detection of miRNA Using Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2020, 92, 12769-12773.	6.5	51
8	Streamer discharge initiation from an isolated spherical hydrometeor at subbreakdown condition. Journal of Electrostatics, 2020, 106, 103457.	1.9	4
9	Streamer initiation from column hydrometeor at weak ambient electric field. Plasma Research Express, 2019, 1, 035009.	0.9	4
10	Optimization of the electric field calculation for a rod-shaped conductor in a uniform electric field. International Journal of Modern Physics C, 2019, 30, 1950039.	1.7	3
11	Mechanism of the typical relaxation process at low frequency based on dielectric measurements of water absorbed in porous titanium dioxide. Europhysics Letters, 2016, 113, 47007.	2.0	0
12	Time-dependent interaction across two conducting spheres in an applied electrostatic field. Journal of Electrostatics, 2016, 81, 54-58.	1.9	2
13	Liquid–solid transition of water confined in nanoporous titanium dioxide. Modern Physics Letters B, 2016, 30, 1650250.	1.9	2
14	Vibrational features of confined water in nanoporous TiO ₂ by Raman spectra. Chinese Physics B, 2016, 25, 026801.	1.4	2
15	Two identical conducting spheres with same potential in a uniform electric field. Journal of Electrostatics, 2015, 77, 88-93.	1.9	7
16	Multiple Image Method for the Two Conductor Spheres in a Uniform Electrostatic Field. Communications in Theoretical Physics, 2012, 57, 1066-1070.	2.5	7
17	Giant electrostatic interaction between two neutral conducting spheres in a uniform electric field: A theoretical study via the multiple-image method. Modern Physics Letters B, O, , .	1.9	1