
Ming Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11378021/publications.pdf Version: 2024-02-01

MINCLU

#	Article	IF	CITATIONS
1	Influence of heat treatment on the discharge performance of Mg-Al and Mg-Zn alloys as anodes for the Mg-air battery. Chemical Engineering Journal, 2022, 433, 133797.	12.7	25
2	A comprehensive review of the development of magnesium anodes for primary batteries. Journal of Materials Chemistry A, 2021, 9, 12367-12399.	10.3	72
3	Understanding the discharge behavior of an ultra-high-purity Mg anode for Mg–air primary batteries. Journal of Materials Chemistry A, 2021, 9, 21387-21401.	10.3	27
4	First-principles search for alloying elements that increase corrosion resistance of Mg with second-phase particles of transition metal impurities. Computational Materials Science, 2019, 165, 154-166.	3.0	29
5	Corrosion avoidance in lightweight materials for automotive applications. Npj Materials Degradation, 2018, 2, .	5.8	49
6	Stress corrosion cracking of several solution heat-treated Mg–X alloys. Corrosion Science, 2015, 96, 121-132.	6.6	41
7	Stress corrosion cracking of several hot-rolled binary Mg–X alloys. Corrosion Science, 2015, 98, 6-19.	6.6	26
8	Influence of casting porosity on the corrosion behaviour of Mg0.1Si. Corrosion Science, 2015, 94, 255-269.	6.6	37
9	Review of Recent Developments in the Field of Magnesium Corrosion. Advanced Engineering Materials, 2015, 17, 400-453.	3.5	595
10	Influence of hot rolling on the corrosion behavior of several Mg–X alloys. Corrosion Science, 2015, 90, 176-191.	6.6	140
11	Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy. Journal of Alloys and Compounds, 2015, 621, 53-61.	5.5	93
12	Corrosion of ultra-high-purity Mg in 3.5% NaCl solution saturated with Mg(OH)2. Corrosion Science, 2013, 75, 78-99.	6.6	271
13	Impurity control and corrosion resistance of magnesium–aluminum alloy. Corrosion Science, 2013, 77, 143-150.	6.6	70
14	Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg–RE alloys: RE=Ce, La, Nd, Y, Gd. Corrosion Science, 2013, 76, 98-118.	6.6	143
15	Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg–X alloys: X=Mn, Sn, Ca, Zn, Al, Zr, Si, Sr. Corrosion Science, 2013, 76, 60-97.	6.6	212
16	The ignition temperature of Mg alloys WE43, AZ31 and AZ91. Corrosion Science, 2012, 54, 139-142.	6.6	77
17	Corrosion mechanism applicable to biodegradable magnesium implants. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1609-1636.	3.5	355
18	Electrochemical reactivity, surface composition and corrosion mechanisms of the complex metallic alloy Al3Mg2. Corrosion Science, 2010, 52, 562-578.	6.6	78

Ming Liu

#	Article	IF	CITATIONS
19	Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corrosion Science, 2010, 52, 579-588.	6.6	774
20	The influence of yttrium (Y) on the corrosion of Mg–Y binary alloys. Corrosion Science, 2010, 52, 3687-3701.	6.6	299
21	Calculated phase diagrams and the corrosion of die-cast Mg–Al alloys. Corrosion Science, 2009, 51, 602-619.	6.6	296
22	A first quantitative XPS study of the surface films formed, by exposure to water, on Mg and on the Mg–Al intermetallics: Al3Mg2 and Mg17Al12. Corrosion Science, 2009, 51, 1115-1127.	6.6	234
23	An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing. Corrosion Science, 2009, 51, 1277-1292.	6.6	238
24	ToF-SIMS depth profile of the surface film on pure magnesium formed by immersion in pure water and the identification of magnesium hydride. Corrosion Science, 2009, 51, 1883-1886.	6.6	66
25	Calculated phase diagrams, iron tolerance limits, and corrosion of Mg-Al alloys. Jom, 2008, 60, 39-44.	1.9	78
26	The effect of crystallographic orientation on the active corrosion of pure magnesium. Scripta Materialia, 2008, 58, 421-424.	5.2	253
27	Influence of the Î ² -phase morphology on the corrosion of the Mg alloy AZ91. Corrosion Science, 2008, 50, 1939-1953.	6.6	524
28	Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41. Corrosion Science, 2008, 50, 3168-3178.	6.6	378